
Verification and
Validation and

Artificial Intelligence

Tim Menzies
Lane Department of Computer Science,

University of West Virginia,
PO Box 6109, Morgantown,

WV, 26506-6109, USA;
http://tim.menzies.com

tim@menzies.com

September 15, 2002

Abstract

AI software is often adeclarative model-based executable knowledge-
level nondeterministic complex adaptivesystem. These article describes all
these features as well as their implications for verification and validation.

To appear, Foundations 02: A V&V Workshop; October 22-23, 2002Kossiakoff Conference &
Education Center, Johns Hopkins U. Applied Physics Lab Laurel, Maryland USA. Home page:
http://www.sisostds.org/webletter/siso/iss_86/art_493.htm .

Download this paper athttp://tim.menzies.com/pdf/02vvai.pdf .

WP ref: wp/02/aivv/aivvis-v2.

http://tim.menzies.com
http://www.sisostds.org/webletter/siso/iss_86/art_493.htm
http://tim.menzies.com/pdf/02vvai.pdf
mailto:tim@menzies.com

Contents

List of Figures . 4
About the author . 5

1 Introduction 6

2 Model-based AI Systems 7
2.1 Declarative Models and V&V10

3 AI Models are Executable 13
3.1 RUDE Models .16
3.2 V&V of Executable Models .16

4 AI and the Knowledge-Level 17
4.1 Knowledge-Level V&V .21

5 AI Software can be Nondeterministic 23
5.1 Random SELECT and Scalability23
5.2 Surveying the Nondeterministic Space25
5.3 Random SELECT and Options Analysis28
5.4 Nondeterminism and V&V .31

6 AI Software can be Complex 32
6.1 V&V of Complex Software .33

6.1.1 Static Analysis .33
6.1.2 Runtime Verification .34
6.1.3 Model Checking .37

7 Adaptive AI Systems 39
7.1 Introduction to Learning .41
7.2 Adaption and V&V .45

7.2.1 Do you Have Enough Data?45
7.2.2 External Validity .47

7.3 Case Study .47
7.3.1 Accuracy of the Learnt Model48
7.3.2 Learning and Consistent Convergence51
7.3.3 Learning and Ease of Configuration51
7.3.4 Learning and Readability52

2

7.4 Readability and Treatment Learners52
7.5 Learning to Trust Adaption .54

8 AI is Software 54

9 Summary and Challenges 57
9.1 Benefits and Costs of Declarative Models57
9.2 Benefits and Costs of Very Early Life Cycle Executables58
9.3 Benefits and Costs of Knowledge-level Content59
9.4 Benefits and Costs of Nondeterminism59
9.5 Benefits and Costs of Great Complexity60
9.6 Benefits and Costs of Adaptivity60

Acknowledgements 61

Disclaimer 61

References 61

3

List of Figures

1 Abbreviations used in this article.6
2 A framework for model-based V&V.11
3 The Preece hierarchy of verification errors.12
4 Ratio oferrors/anomaliesseen in real-world expert systems.12
5 An example frame. .14
6 Rules as frames. .15
7 A rule. .19
8 Some sentences from Figure 7.19
9 PSMs identified by Clancey [26] within Figure 7.19
10 The real heuristic knowledge within Figure 7.20
11 Explicit problem solving (PSM) meta-knowledge.20
12 Change times for ETM. .23
13 Runtimes .24
14 The phase-transition effect. .25
15 Examples of condensing clouds.27
16 Viewpoints from two experts.29
17 Union of the viewpoints of figure 16.30
18 Worlds from figure 17. .31
19 Slicing in Grammatech’s CodeSurfer tool.33
20 The RAX error. .35
21 The deadlock error of Figure 2036
22 Always, the elevator door never opens more than twice37
23 Experiments in reducing the state-space explosion40
24 Operators available to our adaptive robot.42
25 Planning macros. .42
26 Decision-tree learning. .44
27 Error rates and number of nodes in the learnt decision tree45
28 Impact of learning a decision tree fromN or 2N examples. 46
29 Predicting modules with high cost modules and many faults. . . .48
30 Predicting fault-prone modules.49
31 Accuracy assessment data on learnt models49
32 A learnt decision tree. .50
33 Treatments learnt by TAR2 using the data used in Figure 32. . . .53
34 A Madachy table. .56

4

About the author

Former nurse/taxi-driver. Failed
hippy (a watch needs tension in the

spring to make it go). Forever
Australian but currently on
extended loan to the USA.

Dr. Menzies is the Software Engineering Re-
search Chair at the Lane Department of Com-
puter Science and Electrical Engineering, West
Virginia University. In that position he consults
nearly fulltime with the NASA IV&V facility
Fairmont West Virginia on applying advanced
software engineering techniques to NASA prob-
lems.

Dr. Menzies has a long background in practi-
cal applications of artificial intelligence. For ex-
ample, he was the author of Australia’s first ever
exported expert system in 1987.

Dr. Menzies holds a Ph.D. in artificial in-
telligence (1995), a masters of cognitive science
(1988) and a computer science undergrad degree
(1985), all from the University of New South
Wales, Sydney, Australia. When studying scien-
tific models, Dr. Menzies routinely uses learners
to condense the output of those models into a suc-
cinct form. Apart from machine learning, has has
explored other automatic generalization tools (e.g. formal concept analysis and
rough sets) and their utility in requirements engineering.

He published over 115 published papers in venues such as the IEEE Trans-
actions of Knowledge and Data Engineering [84], IEEE Software [89], the AI
in Medicine journal [85], the ACM IEEE International Symposium on Require-
ments Engineering [47, 91], the IEEE International Symposium on Reliability
Engineering [86, 97], the ACM IEEE Automated Software Engineering Confer-
ence [99, 101], IEEE International Conference on Tools with Artificial Intelli-
gence [87], and the International Journal on Artificial Intelligence Tools [88].

Active in the research community, Dr. Menzies has organized workshops in
the past for ICSE (2000), IJCAI (1991,2001), AAAI (1999), numerous workshops
in knowledge acquisition (1996-2000), and the recent model-based requirements
engineering workshop (2001). He has also served as guest editor for the Require-
ments Engineering Journal, the International Journal of Human Computer Studies
(twice). Currently, he is special guest editor and organizer of a special issue on
Empirical AI for the IEEE journal of Intelligent Systems.

5

1 Introduction

Imagine you are a verfication and validation (V&V) analyst asked to review some
artificial intelligence (AI) software. Would you know what to do? How should
you modify your approach from regular V&V? What are the traps of V&V of AI
software? What leverage for V&V can be gained from the nature of AI software?

This article offers an overview of the six features of AI systems that a V&V
analysts must understand. An AI system is often some combination of:

1. A declarative model-basedsystem;
2. A system that isexecutablevery early in its development.
3. A knowledge-levelsystem.
4. An nondeterministicsystem
5. Complex software.
6. Adaptive software.

Fortunately, not all AI systems have all the above features since each can come
with a significant cost. However, each of these features grantssignificant benefits
that can make the costs acceptable.

The rest of this article is structured around this list of features of an AI system.
The features will be discussed in the order above. Each feature will be defined
and its costs and benefits summarized. Our discussion will use the abbreviations
shown in Figure 1.

AI artificial intelligence

KB knowledge base

KE knowledge engineering

KBS knowledge based system

RAX remote agent experiment

V&V verfication and validation

Figure 1: Abbreviations used in this article.

6

Note that the approach of this review is different to the traditional reviews
of AI verification [3, 24, 45, 55, 105, 106, 114, 119–122, 127, 143] or AI valida-
tion [21, 58, 74, 107, 115, 126, 128, 147, 156]. Much has changed since the early
days of AI and the field has moved on to more than just simple rule-based sys-
tems. While other articles offer success stories with that representation (e.g.
[4, 43, 80, 139] and [18, chpt8,30,31,34]), this review focuses on the features of
modern AI that distinguishes it from conventional procedural software; e.g. non-
deterministic adaptive knowledge-level systems. If the reader is interested in that
traditional view, then they might care to read the references in this paragraph (in
particular [4, 18, 122, 156] or one of the many excellent on-line bibliographies on
V&V of AI systems1.

2 Model-based AI Systems

Every V&V analysts knows that reading and understanding code is much harder
than reading and understanding high-level descriptions of a system. For example,
before reading the “C” code, an analyst might first study some high-level design
documents. The problem with conventional software is that there is no guarantee
that the high-level description actually corresponds to the low-level details of the
system. For example,after the high-level block diagram is designed, a program-
mer might make a call between blocks and forget to update the high-level block
diagram.

A distinct advantage ofmodel-basedAI systems is that the high-level descrip-
tion is the system. A common technique used in AI is to define a specialized,
succinct, high-level modelling language for some domain. This high-level lan-
guage is then used to model the domain. If another automatic tool is used to
directly execute that notation, then we canguaranteethat the high-level model
has a correspondence to the low-level execution details.

These models are oftendeclarativeand V&V analysts can exploit such declar-
ative knowledge for their analysis2. Declarative representations can best be under-
stood by comparing them toprocedural representationsused in standard procedu-
ral languages such as “C”. Procedural representations encode the precise ordering

1E.g. http://www.csd.abdn.ac.uk/˜apreece/Research/vvbiblio.html
2Logic programming theorists distinguish between “theories” and “models” where the latter is

an instance of the former and is generated automatically at runtime. This article will use “model”
in its more common usage; i.e. the thing that is generated by analysts when they record information
about their domain.

7

http://www.csd.abdn.ac.uk/%CB%9Capreece/Research/vvbiblio.html

require to complete some task. Such procedures store knowledge abouthow to
do something. This knowledge is held by individuals in a way which does not
allow it to be communicated directly to other individuals. Procedural knowledge
often manifests itself in thedoing of something. Much human knowledge, such
as riding a bicycle, is procedural. Anyone who has tried to train another in riding
a bike knows that it is difficult to reduce to words that which we obviously know
or know how to do. In fact, attempts to do so are often recognized as little more
than after-the-fact rationalizations (a phenomenon well known to all requirement
engineers).

On the other hand, declarative representations describes facts and relationships
within a domain. Declarative knowledge is often statements aboutwhat is true in
a domain. Such knowledge can takes the form of relatively simple and clear state-
ments which can be added and modified without difficulty. Due to its simplicity,
declarative knowledge can be easily communicated to others and used in different
ways.

For example, consider the following piece of procedural knowledge. This
sample of code reports that you have a kind of “X” disease if symptoms can be
found for any sub-type of that disease.

if ((record.disease(X)==found) &&
(diseases = record.disease(X).subtypes)

) { for(disease in diseases) {
for(symptom in disease.symptoms) {

for (observation in observations) {
if symptom == observation {

printf(
"You have %s which is a type of %s!\n",
disease,X);

return 1 }}}}}

This implementation reports that you have “X” if it finds any evidence for any
of the sub-types of “X”. Suppose we wanted to report thedisease that we have
themostevidence for; i.e. thedisease that has the mostsymptoms amongst
the availableobservations . In this procedural representation, this change
would imply extensive modification to the code.

A declarative representation of the above might look like this:
subtype(bacterial, measles).
subtype(bacterial, gastro).
subtype(injury, carAccident).

symptom(measles, temperature).
symptom(measles, spots).
symptom(gastro, temperature).
symptom(gastro, dehydration).
symptom(carAccident, wounds).

8

Declarative representations free the analyst from specifying tedious procedural
details. For example, the above procedural code could be reproduced as follows:

evidence(Disease,SubType,Evidence) :-
subtype(Disease,SubType),
symptom(SubType,Evidence),
observation(Evidence).

Of course this declarative representation is useless without some procedure
that interprets it. Our example here uses the syntax of the Prolog logic program-
ming language [13]. In that language, upper case words are variables and lower
case words are constants. The above definition ofevidence supplies all the de-
tails Prolog needs to specify our search through thesymptoms andsubtypes .

Procedural knowledge is opaque and relatively inflexible. Declarative knowl-
edge is far more flexible since the knowledge ofwhat is separated from thehow,
This means that thewhat can be used in many ways. For example, suppose we
want to drive the diagnosisbackwardsand find what might cause spots. To do
this, we first musttrick Prolog into believing that all observations are possible.
This is easily done as follows:

observation(_).

Here, the “” is an anonymous variablethat matches anything at all. In the
language of Prolog, this means that we will assume any observation at all. With
this trick in place, we can now drive theevidence rule backwards to find that
spots can be explained via abacterial infection.

?- evidence(Disease,SubType,spots).

Disease = bacterial
SubType = measles

A more complicated query might be to find evidence thatdisprovessome cur-
rent hypothesis. For example, suppose we believe the last query; i.e. the observed
spots can be explained via abacterial infection. Before we commence
treatment, however, it might be wise to first check for evidence of other diseases
that share some of theevidence for measles . Since our knowledge is declar-
ative, we need not changeanyof theevidence rule. Instead, we just reuse it in
a special way:

differentialDiagnosis(Disease,Old,Since,New,If) :-
evidence(Disease,Old,Since),
evidence(Disease,New,Since), % Old and New share some

% evidence
evidence(Disease,New,If),
not evidence(Disease,Old,If). % New has some evidence

% not seen in Old

With this in place, we can run the following query to learn thatmeasles can

9

be distinguished fromgastro if dehydration can be detected:
?- differentialDiagnosis(bacterial,Old,Since,New,If).

Old = measles
Since = temperature
New = gastro
If = dehydration

2.1 Declarative Models and V&V

The ability to build simple queries for a declarative model greatly reduces the
effort required for V&V. For example, one method for V&V of model-based sys-
tems is to build a profile of anaverage model. The TEIREISIAS [36] rule editor
applied a clustering analysis to its models to determine what parameters wherere-
lated; i.e. are often mentioned together. If proposed rules referred to a parameter,
but not its related parameters, then TEIREISIAS would point out a possible error.

Many declarative modelling languages only use a small number of modelling
constructs. This simplifies the construction of translators from one modelling
language to another. This can be a useful V&V tool. For example, model checking
is a powerful method for automatically exploring all pathways within a program
(model checking is discussed in§6.1.3). However, model checkers have to run
over a declarative representation of the program. Typically, this must be hand-
coded. However, for model-based AI systems, simple automatic tools [118] can
convert the syntax of the model to the input syntax of the model checker.

Model checking represents the state-of-the-art in automatic model-based anal-
ysis. The technique is powerful, but can be complicated. Feather and Smith re-
port that a much simpler model-based technique can still be very insightful [48].
When asked to check the planner module of NASA’s Remote Agent Experiment,
they developed the architecture of Figure 2. RAX1’s planner automatically gen-
erated plans that responded to environmental conditions while maintaining the
constraints and type rules specified by human analysts. An important feature of
the planner was the declarative nature of the constraints being feed into the plan-
ner and the plans being generated. Feather and Smith found these plans could
be easily and automatically converted into the rows of a database. Further, the
constraints could also be easily and automatically converted to queries over the
database. As a result, given the same input as the planner, they could build a
simple test oracle that could check if the planner was building faulty plans.

The Feather and Smith method can be very cost-effective and applied quite
widely:

10

human

options
initial

conditions
constraints and
type information

database
schema

environment

planner

sensors

plan

database

anomaly
reports

translation
to db queries

generated plans
loaded to DB

Figure 2: A framework for model-based V&V.

• The rectangles in Figure 2 denoting the sections that must be built manually.
Once these sections are built, they can be reused to check any number of
plans.

• The architecture of Figure 2 could be generalized to any device that accepts
declarative constraints as inputs and generates declarative structures as out-
put.

Preece reports other simple but effective V&V tools that utilize the model-
based nature of AI systems [122]. Preece studied rule-based models which are
lists of statements of the following form:

if

premise︷ ︸︸ ︷
La ∧ Lb ∧ Lc ∧ . . . then

conclusion︷ ︸︸ ︷
Lx ∧ Ly ∧ Lz ∧ . . .

The Preece analysis defined a taxonomy of verification issues for rule-based
models (see Figure 3) and argued that a variety of AI model-based verification
tools target different subsets of these issues (perhaps using different terminology).

11

Anomaly ←

Redundanct ←

Unusable

Redundant ←
{

Duplicate
Subsumed

Ambivalence ← Conflict
Circularity

Deficiency ←
{

Missing rules
Missing values

Figure 3: The Preece hierarchy of verification errors.

Application
mmu tapes neuron displan dms1 ratio

errors to
anoma-
lies

subsumed 0 5/5 0 4/9 5/59 14/73
= 19%

missing
rules

0 16/16 0 17/59 0 33/75
= 44%

circularity 0 0 0 20/24 0 20/24
= 83%

Figure 4: Ratio oferrors/anomaliesseen in real-world expert systems. From [121].
“Subsumed” reports repeated rule conditions. “Missing rules” denote combina-
tion of attribute ranges not seen in any rule. “Circularity” reports loops found in
the dependency graph between variables in the system.

12

The Preece taxonomy require meta-knowledge about the terms found within a
knowledge base (which Preece et.al. callliterals):

• A literal Li is askableif it represents a datum that the rule-base can request
from the outside world.

• A literal Li is afinal hypothesisif it is declared to be so by the rule-base’s
author and only appears in a rule conclusion.

• A rule is redundantif the same final hypotheses are reachable if that rule
was removed. Anunusableredundant rule has some impossible premise.
A rule-base isdeficientif a consistent subset ofaskablesleads to no final
hypotheses. Aduplicate redundant rulehas a premise that is a subset of
another rule premise.

• Preece definedduplicate rulesfor the propositional case andsubsumed re-
dundant rulesfor the first-order case. In the first-order case, instantiations
have to be made to rule premise variables prior to testing for subsets.

• Preece definedambivalenceas the case where, given different consistent
subset of askables, a rule-base can infer the same final hypotheses.

Preece stresses that the entries in their taxonomy of rule-base anomalies may not
be true errors. For example, the dependency network from a rule-base may show a
circularity anomaly between literals. However, this may not be a true error. Such
circularities occur in (e.g.) user input routines that only terminate after the user
has supplied valid input.

More generally, Preece argued convincingly that automatic verification tools
can never find “errors”. Instead, they can only find “anomalies” which must be
checked manually. The percentage of true errors, i.e.errors/anomaliescan be quite
small. For example, Figure 4 shows theerrors/anomaliesratios seen in five knowl-
edge based system (KBS)s. Note that not all anomalies are errors.

3 AI Models are Executable

Model-based systems offer both a notationandan interpreter of that notation. For
example, the rule-based systems studied by Preece are often interpreted using a
MATCH-SELECT-ACT cycle:

MATCH: Find all the rules with satisfied conditions.

SELECT: Cull that list of rules down to one item. For example, we might favor
rules that have worked best in the past.

13

cylinder = object +
[height=

[range = number(new value) and new value > 0
,help = print("Height must be a positive number")
,if_needed = ask
,if_removed = remove volume from this cylinder
,cache = yes
]

,radius=
[range = number(new value) and new value > 0
,help = print("Radius must be a positive number")
,if_needed = ask
,if_removed = remove cross_section from this cylinder
,cache = yes
]

,cross_section=
[if_needed = pi * radius of this cylinder ˆ 2
,if_removed = remove volume from this cylinder
,cache = yes
]

,volume=
[if_needed = cross_section of this cylinder

* height of this cylinder
,cache = yes
]

].

Figure 5: An example frame. Adapted fromhttp://www.cse.unsw.edu.
au/˜billw/cs9414/notes/kr/frames/frames.html .

ACT: Apply the action of the selected rule.

Another commonly used inference procedure isframe-based demons. Frames
are like objects except frame-based languages come with built-in mechanisms
for searching over all the frames. Frames haveslotsand slots can havedemons.
Demons cause side effects when the slot is accessed. Standard demons are:

if added: triggered when a new value is put into a slot.

if removed: triggered when a value is removed from a slot.

if replaced: triggered when a slot value is replaced.

if needed: triggered when there is no value present in an instance frame and a
value must be computed from a generic frame.

if new: triggered when a new frame is created.

14

http://www.cse.unsw.edu.au/%CB%9Cbillw/cs9414/notes/kr/frames/frames.html
http://www.cse.unsw.edu.au/%CB%9Cbillw/cs9414/notes/kr/frames/frames.html

rule332 = rule +
[description = "Tell the user to hold

his breath if the chemical
is toxic"

,ifWorkingOnTask = ascertainImminentDanger
,ifPotentiallyRelevant = toxicity of chemical is high
,ifTrulyRelevant = location of chemical is

(nearby of user)
,thenTellUser = "Do not breathe this chemical!"
,thenAddToAgenda = [summonAmbulances,warnOthers]
,priority = high
,worth = 900
,avgRunningTime = seconds of 0.1
,frequencyOfUse = [considered=985, used=4]
,generalizations = [rule899, rule45]
,specializations = [rule336]
,justification = "Breathe&DieScenario"
,author = johnson
,creationDate = 81/July/9/17/30
].

Figure 6: Rules as frames. Modified fromBuch83 .

Slots can also havefacets which contain meta-knowledge about the slot.
These facets are not demons themselves, but contain the information or procedures
used by some demos. For example, in the frame example of Figure 5:

• Range is a facet triggered by theif-added demon a new value is added.
The new value must satisfy the range and, if not, the procedure in thehelp
facet is triggered.

• Cache is a boolean facet that means that when a value is computed it is
stored in the instance frame.

• If the booleanmulti valued facet is true, then the slot may contain more
than one value.

Aikins [1] and Lenat [51] noted that the MATCH-SELECT-ACT cycle was
often modified to the particulars of a rule-base. The modifications were typically
made to control the order in which rules were searched. These authors proposed
using frames to model that control knowledge. For example,rule332 in Fig-
ure 6 describes a rule that should be tested if the current task isascertainImminentDanger
(note that MATCH can ignore rules outside of the current task- this can speed
up the MATCH process). For rules of this form, MATCH first makes a set of
quick tests shown inifPotentiallyRelevant which can cull rules that are
not truly relevant. The surviving rules are then studied in more detail using the

15

ifTrulyRelevant test. The remaining rules are then sorted according to nu-
merous criteria such as theworth of their action, thepriority of using this
rule, and thefrequencyOfUse . This last criteria might cull this rule since we
see that is often considered, but rarely used. Thespecializations of the top
ranked remaining rules are then tested to see if some other specialized knowledge
should be applied instead of this rule. If not, this rule adds two items to the list of
current actionssummonAmbulances andwarnOthers .

3.1 RUDE Models

For less-defined tasks, a traditional waterfall development process can stagnate in
the analysis stage since not enough is known about the domain. An alternative
approach is to use model-based methods to generate an executable version of the
current conceptualization of a system. Since the model is high-level and succinct,
it should be easy to quickly add more knowledge. On execution, the interaction of
that model can lead to surprising results that prompt clarifications and extensions
of the model. This approach has been called various things including “knowledge
elicitation via irritation” or the RUDE model; i.e.

RUDE = Run → Understand → Debug → Edit

Rule-based RUDE methods resulted in the “AI spring” of the 1980s. Many
well-documented, mature, and optimized rule-based systems were developed such
as ART 3, CLIPS4, and OPS5 [16] (just to name a few). Numerous significant
rule-based systems were developed including the commercially successful XCON
computer configuration system [81].

3.2 V&V of Executable Models

The ability to directly execute the specification tempts the developer not to pro-
duce explanatory documentation about the system. Imagine a V&V analyst asked
to review a complex model-based system developed using RUDE. That RUDE
system may have no other documentation than the model itself. Without that sup-
porting documentation, it can become difficult to assess the model.

3From Inference Corporation
4The “C” Language Integrated Production System, developed by NASA [111]

16

The core of the problem is theoperationalization assumption[103] which is
the mistaken belief that if we can watch a program execute, then we can under-
stand it. The flaw with this assumption is two-fold. Firstly, all too frequently, no
other V&V procedure is proposed other than “let’s watch it run”. That is, the oper-
ationalization assumption deludes the developers into doing less testing. Second,
usually, it is the creators of the program who are watching it run. We should not
ask the creators of a program to evaluate that program by merely watching it run.
The “halo effect” prevents a developer from looking at a program and assessing
its value. Cohen likens the halo effect to parents gushing over the achievements
of their children and comments that...

What we need is not opinions or impressions, but relatively objective
measures of performance. [32, p74].

Consider the case where a program runs and generates 10MB of output. How
can a human review all that output? Unless we have (a) some expectation of ap-
propriate behavior and (b) analysis tools for the resulting behavior then we cannot
assess if the runtime behavior of a system is adequate. Methods for analyzing that
output discussed in this article include the Feather and Smith method of Figure 2;
TAR2 (§5.2); runtime verification (§6.1.2); and model checking (§6.1.3).

4 AI and the Knowledge-Level

The blossoming of model-based methods in the AI spring was not followed by an
AI summer. Most of those models were rule-based and a assumption underlying
the RUDE approach for such systems was theRUDE rules assumption; i.e:

Rules are independent chunks of knowledge which can be easily added
or changed or removed.

This proved not to be the case. For example, once XCON grew to 10,000 rules,
the developers of XCON had a RUDE awakening: maintaining XCON’s rules had
become fiendishly complicated. To some extent, this was due to the density of
knowledge within XCON:

• The expertise within XCON’s rules reflected DEC’s state-of-the-art knowl-
edge in configuring computers.

• Such a rich library of knowledge will be intricate to maintain, no matter
how it is expressed.

17

However, another factor that complicated XCON’s maintenance was that its rules
violated the RUDE assumption. Real-world rule bases often contained groups of
rules with significant interactions. For example a careful reverse engineering of
XCON showed that the system executed though severaloperator spaceswhere
methods for improving the design of a computer were carefully collected, re-
jected, elaborated, or assessed, before the appropriate bestoperatorwas finally
selected [4]. The use of such coordinating rules violates the RUDE assumption
since every addition to the rule base has to be assessed with respect to its effect on
the rest of the rules.

Many other researchers argued that rules were not the appropriate primitive
construct for AI. Despite careful attempts to generalize the early rule-based work
(e.g. [142]), the construction of rule bases remained a somewhat hit-and-miss pro-
cess. By the end of the 1980s, it was recognized that design concepts such as
rule-based methods were incomplete [19]. For example, Bobrow’s reverse engi-
neering of real-world AI systems [8] found that numerous paradigms were be-
ing employed including rule-based, logic-based, functional, object-oriented, and
“access-based” (which, these days, we might call implicit invocation [136]).

The dominant paradigm for the 1990s AI research into better methods for
model-based AI was theknowledge-levelproposal of Allen Newell [112,113]. In
this proposal, intelligence is modelled as:

A search for appropriateoperatorsthat convert somecurrent stateto
a goal state. Domain-specific knowledge in used to select the op-
erators according tothe principle of rationality; i.e. an intelligent
agent will select an operator which its knowledge tells it will lead the
achievement of some of its goals.

For example, the above analysis of XCON that divided its processing intooperator
spacesis a Newell-style knowledge-level analysis.

We can divide research into knowledge level modelling into two broad camps-
a majority view and a minority view:

1. In the majority view, a KB should be divided into domain-specific facts
and libraries of domain-independent problem-solving methods (PSMs). For
example, Clancey argues that AI models should separate heuristics like
Figure 7 into domain-specific knowledge about the terminology (see Fig-
ure 8) and the meta-knowledge which controls the application of the knowl-
edge (see Figure 9) and true domain-specific heuristic knowledge (see Fig-
ure 10) [26]. In the KADS approach, PSMs may be expressed graphically

18

if the infection is meningitis and
the infection is bacterial and
the patient has undergone surgery and
the patient has undergone neurosurgery and
the neurosurgery-time was < 2 months ago and
the patient received a ventricular-urethral-shunt

then infection = eColi (.8) or klebsiella (.75)

Figure 7: A rule.

subtype(meningitis,
bacteriaMenigitis).

subtype(bacteriaMenigitis,
eColi).

subtype(bacteriaMenigitis,
klebsiella).

subsumes(surgery,
neurosurgery).

subsumes(neurosurgery,
recentNeurosurgery).

subsumes(recentNeurosurgery,
ventricularUrethralShunt).

causalEvidence(bacteriaMenigitis,
exposure).

circumstantialEvidence(bacteriaMenigitis,
neurosurgery).

Figure 8: Some sentences from Figure 7.

Strategy Description
exploreAndRefine Explore super-types

before sub-types.
findOut If an hypothesis is

subsumed by other
findings which are
not present in this
case then that hy-
pothesis is wrong.

testHypothesis Test causal con-
nections before
mere circumstantial
evidence.

Figure 9: PSMs identified by Clancey [26] within Figure 7.

19

if the patient received a
ventricular-urethral-shunt

then infection = e.coli (.8) or
klebsiella (.75)

Figure 10: The real heuristic knowledge within Figure 7.

abstractdata obs

abstraction rules

hypothesise hyp

causal rules

Figure 11: Explicit problem solving (PSM) meta-knowledge: A simple KADS-
style PSM for diagnosis.Abstract andhypothesis are primitive inferences
which may appear in other PSMs. From [148].

such as in Figure 11 (ovals are functions, rectangles are data structures).
2. In the minority view, knowledge models use a single PSM. In Newell’s op-

erationalisation of KL, this single PSM is the problem-space computational
model (PSCM) [113, 154, 155]. Programming the PSCM involves the con-
sideration of multiple, nested problem spaces. Whenever a “don’t know
what to do” state is reached, a new problem space is forked to solve that
problem. The observation that a PSCM system is performing (e.g.) clas-
sification is a user-interpretation of a single lower-level inference (operator
selection over a problem space traversal) [154].

That is, both the majority and the minority views use PSMs. The difference
is that the minority view only uses 1 PSM while the majority approach usesN
PSMs. In this, the majority approach, each PSM combines a common set of under-
lying inference mechanisms (called various terms like “knowledge sources” [151],
“mechanisms” [78], etc; e.g.abstract andhypothesis in Figure 11).

Currently, the major focus of the AI modelling community is on the majority
approach: e.g.

• cognitive patterns [50];
• CommonKADS [132,133,151];
• configurable role-limiting methods [53,144];
• MIKE [2];
• the Method-To-Task approach [44];
• generic tasks [23];

20

• SPARK/BURN/FIREFIGHTER- hereafter, SBF [78];
• model construction operators [26];
• components of expertise [141];

Libraries of PSMs are described in [7, 15, 23, 50, 110, 133, 145]. See theRelated
Work section of [151] for a discussion of the differences in some of these tech-
niques.

A halfway position between the majority and minority views is offered by
Chandrasekaran et.al. [23] in which:

• PSMs describetasks(e.g. diagnosis) which can be implemented by. . .
• Methods(e.g. classification, simulation) which can be specified in a generic

way using the PSCM. Note that methods may be implemented as tasks
(which may recursively contain methods).

However, even though Chandrasekaran et.al. use the PSCM internally, they
argue that the task-level is the best view for understanding the system without
using too much low-level detail. We have some sympathy with this view. Our
biggest criticism of the PSCM is that there is nowhere to model cliched sets of
operators which have proved useful in previous applications.

4.1 Knowledge-Level V&V

The knowledge level offers a rich meta-level description of a system. A V&V
analyst can use this knowledge to both assess and fix an AI system. For example,
van Harmelen & Aben [148] discuss formal methods for repairing KADS-style
PSMs such as Figure 11. For example, that figure can be formally represented as
a mapping from datad to an hypothesish via intermediariesZ and other dataRi:.

abstract(data(d), R1, obs(Z))
∧

hypothesize(obs(Z), R2, hyp(h))

V&V analysts can restrict their analysis of this model to the three ways this
process can fail:

1. It can fail to proveabstract(data(d), R1, obs(Z)); i.e. it is missing abstrac-
tion rules that mapd to observations.

2. It can fail to provehypothesize(obs(Z ′), R2, hyp(h)); i.e. it is missing
causal rules that mapZ ′ to an hypothesish.

21

3. It can prove either subgoal of the above process, but not the entire conjunc-
tion; i.e. there is no overlap in the vocabulary ofZ andZ ′ such thatZ = Z ′.

Case #1 and #2 can be fixed by adding rules of the missing type. Case #3
can be fixed by adding rules which contain the overlap of the vocabulary of the
possibleZ values and the possibleZ ′ values. More generally, given a conjunction
of sub-goals representing a PSM, fixes can be proposed for any sub-goal or any
variable that is used by> 1 sub-goal.

Another knowledge-level V&V technique is to audit how the PSMs are built.
Knowledge not required for the PSM of the application is superfluous and can be
rejected. In fact, numerous AI editors arePSM-awareand auto-configure their in-
put screens from the PSM such that only PSM-relevant knowledge can be entered
by the user. For example:

• RIME’s rule editor [39, 139] acquired parts of the KB minority-type meta-
knowledge for the XCON computer configuration system [4]. RIME as-
sumed that the KB comprised operator selection knowledge which con-
trolled the exploration of a set of problem spaces. After asking a few ques-
tions, RIME could auto-generate complex executable rules.

• SALT’s rule editor interface only collected information relating directly to
its propose-and-revise inference strategy. Most of the SALT rules (2130/3062≈
70%) were auto-generated by SALT.

• Users of the SPARK/ BURN/ FIREFIGHTER (SBF) [78] can enter their
knowledge of computer hardware configuration via a click-and-point editor
of business process graphs. SBF reflects over this entered knowledge, then
reflects over its library of PSMs. When more than one PSM can be selected
by the entered knowledge, SBF automatically generates and asks a question
that most distinguishes competing PSMs.

PSM-aware editors can not only assist in entering knowledge, but also in test-
ing and automatically fixing the entered data. For example, in the case where
numerous changes have to be made to a PSM, if the user does not complete all
those changes, then the PSM may be broken. Gil & Tallis [54] use a scripting lan-
guage to control the modification of a multi-PSM to prevent broken knowledge.
TheseKA scriptsare controlled by the EXPECT TRANSACTION MANAGER
(ETM) which is triggered when EXPECT’s partial evaluation strategy detects a
fault. Figure 12 shows some speed up in maintenance times for two change tasks
for EXPECT KBS, with and without ETM. Note that ETM performed some auto-
matic changes (last row of Figure 12).

22

Simple task #1 Harder task #2
no ETM with ETM no ETM with ETM
S4 S1 S2 S3 S2 S 3 S1 S2

Total time (min) 25 22 19 15 74 53 40 41
Time completing
transactions

16 11 9 9 53 32 17 20

Total changes 3 3 3 3 7 8 10 9
Changes made
automatically

n/a n/a 2 2 n/a n/a 7 8

Figure 12: Change times for ETM with four subjects: S1. . . S4. From [54]

5 AI Software can be Nondeterministic

Conventional software isdeterministicsince, usually, it contain hard-wired deci-
sion paths that are a one-way function for converting inputs to outputs. Anonde-
terministicproduct lacks such hard-wired paths and, hence, the same inputs can
give rise to different outputs. Nondeterminism is mistrusted and misunderstood by
test engineers. For example, the guru of software safety Nancy Leveson cautions
that “nondeterminacy is the enemy of reliability” [75]. However, as we shall see,
nondeterminacy can be a powerful tool; can enable solutions that are otherwise
impossible; and can be a useful tool for a test engineer.

5.1 Random SELECT and Scalability

MATCH-SELECT-ACT systems can exhibit nondeterminism. In the case where
MATCH returns more than one possible current action, and SELECT can’t pick
between them, then a random SELECT operator might be applied. Random SE-
LECT seems a perverse method of processing a system. However, there are many
situations where nondeterminism is a valid inference procedure.

A repeated and surprising empirical result is that a randomized SELECT can
often solve larger problems faster than traditional complete methods. For exam-
ple, random SELECT has been observed to generate plans in AI systems one to
two orders of magnitude bigger than ever done before with complete search [70,
134].

Other work has compared complete to random SELECT through all the what-
ifs generated from requirements models from different stakeholders. The HT0
nondeterministic inference engine [96] uses a random SELECT technique to re-
turn the first what-if found using a random walk ordering around the model. HT0
can be compared to HT4 [102]- which is the same algorithm with the random

23

0.1

1

10

100

1000

10000

0 3000 6000 9000120001500018000

S
=

ru
nt

im
e

(s
ec

on
ds

)

N=theory size

HT4
HT0

S=O(N^2)

Figure 13: Runtimes

search replaced by a complete search. The runtimes of the two algorithms are
shown in Figure 13. Note that experimentally, HT0 takesO(N2) time to termi-
nate and hence is much faster than the exponential time HT4 algorithm. Note
shown in Figure 13 is the fact that HT0’s search is nearly as good as HT4: the
random SELECT of HT0 finds 98% of the goals found by non-random SELECT.

The success of random SELECT can be explained in terms of thephase-
transitioneffect. Traditional theoretical computer science declares a problem im-
practical if it can be shown to map to a known NP-hard task. Recent empirical
studies have challenged that traditional theoretical view. In thousands of studies,
conducted by hundreds of researchers around the world (e.g. [25, 52, 138]), the
same result appears:

Theoretically slow NP-hard tasks are only truly slow in very narrow
zones.

For example, Figure 14 shows the number of times a particular NP-hard algorithm
hits a dead-end and has to backtrack. Note that outside of a narrow zone, the algo-
rithm could terminate quickly without extensive backtracking. The slow zone cor-
responds to thephase transitionbetween under-constrained and over-constrained
problems:

• In an over-constrained problem, the odds of finding a solution are very low.
Further, if the over-constraints are very tight, we can quickly discover that

24

20

40

60

80

100 %

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Average Neighbours per Country

Number of Backtracks
Odds of Success

Figure 14: The phase-transition effect.

no solution exists since our searches are all quickly blocked. Figure 14 is
over-constrained aboveX = 6.

• In an under-constrained problem, the odds of find a solution is very high
since many solutions exist. Figure 14 is under-constrained belowX = 5.

5.2 Surveying the Nondeterministic Space

The fear with nondeterminism is that the variance in the system’s output will be
so wild that little can be predicted or guaranteed about the system’s performance
at runtime. The previous section argued that this fear is not totally founded since
recent results offer an empirically-based guarantee that nondeterministic search
will find good solutions quicker than complete methods.

Those empirical result may not satisfy safety-focused V&V analysts since
the nondeterministic search could blunder into some unsafe mode of operation.
However, other empirical results suggest that the space of possible modes from a
nondeterministic device can be quickly sampled. Thenarrow funnel effectis the
observation that what happens in the total space of a system can be controlled by a
small critical region. If nondeterministic systems contain narrow funnels, then the
space of possible behaviors reduces the space of possibilities within the funnel.
The funnel effect has been reported in many domains (under different names):

• Master-variablesin scheduling [34];

25

• Prime-implicantsin model-based diagnosis [130] or machine learning [129],
or fault-tree analysis [76].

• Backbonesin satisfiability [116,137];
• The dominance filteringused in Pareto optimization of designs [68];
• Minimal environmentsin the ATMS [38];
• Recall from the previous section that HT4’s complete search yielded lit-

tle more than HT0’s random search. This result is consistent with the space
searched by HT0/HT4 having narrow funnels that constrained both the com-
plete search and random search to similar regions.

• There is some theoretical grounds for believing that narrow funnels are an
emergent property of certain systems [100].

To see the effect of narrow funnels, consider Menzies et.al. [83] study of sim-
ulations based on aselectandcachestrategy. Inselect and cache, if a value for
some uncertain parameter is required during execution, that value isselectedat
random based known ranges for that value. The selected value is thencachedand
if that parameter is required again, the cached value is used. The model executions
are re-run the model many times, taking care to clear the cache between each run5.

As opponents of nondeterminism might predict, this approach generates an
overwhelming amount of data that clouds and confuses the issues. For example,
Figure 15.i and Figure 15.ii show output values generated from two software cost
prediction models executed thousands of times usingselect and cache. In these
figures, each mark represents thecostandbenefitsassociated with a set of de-
cisions about the structure of a software project. Note the large variance in the
possible cost and benefits from the different possible decisions. Faced with such a
large variance in the possible behavior, it is hard to demonstrate that any particular
decision leads to a particular outcome.

If these models contained narrow funnels, then the space of possible behaviors
should be easily reduced by constraining a small number of variables. And in fact,
this turns out to be the case. Figure 15.iii and Figure 15.iv show simulation results
from the same models, with a small number of key parameters constrained. The
constraints were learnt by the TAR2treatment learner[47,65,92–95]. A treatment
learner seeks theleast numberof attribute ranges thatmost differentiatebetween

5Many variants on this scheme have been discussed in the literature. For example this scheme
is the same as Monte Carlo simulations when uncertain parameters are just system inputs. Also,
this scheme is the same as abductive inference [69] where the uncertain parameters are truth as-
signments to assumptions within the model, and some global invariant checking executes before a
new value is assigned.

26

-15

-10

-5

0

5

10

1 2 3 4

B
en

ef
it

Cost

0

50

100

150

200

250

300

400,000 700,000 1,000,000

B
en

ef
it

Cost

Figure 15.i: Cloud1 Figure 15.ii: Cloud2

-15

-10

-5

0

5

10

1 2 3 4

B
en

ef
it

Cost

0

50

100

150

200

250

300

400,000 700,000 1,000,000
B

en
ef

it

Cost

Figure 15.iii: Cloud1, condensed Figure 15.iv:Cloud2, condensed

Figure 15: Examples of condensing clouds. The right-hand model’s cost values
are continuous while the left-hand model has discrete costs.

desired and undesired behavior. Conceptually, given a set of input attributes and
output classifications, the algorithm searches through all combinations of attribute
ranges that are under consideration to find those which lead to themostdesired
outputs and theleastundesirable outputs. This search is clearly intractable since a
complete search of all subsets of the input attribute ranges would take exponential
time. TAR2 only works if the space being explored contains funnels. If the space
does not contain narrow funnels then many variables would be required to control
a space and TAR2’s run times would be too slow.

TAR2 worked in this domain. Figure 15.iii and Figure 15.iv showed a marked
reduction in the variance of the system output and a marked increase in the mean
behavior (less cost, more benefit). Note also that this effect is consistent with
narrow funnels since the restrictions were achieved by only constraining a few
variables while leaving the rest to be chosen nondeterministically duringselect
and cache.

TAR2 is both the test and the application of funnel theory. If a model con-
tains funnels then TAR2’s runtimes won’t be too slow. Further, for domains with
narrow funnels, TAR2 can be used to find controllers that improve the mean and
reduce the variance of the systems behavior.

27

In summary, for models containing narrow funnels, nondeterminism can be
tamed. Hence, before rejecting nondeterminism, it may be wise to perform some
experimentation and test for funnels (perhaps using TAR2).

5.3 Random SELECT and Options Analysis

In the previous section, we have argued that a nondeterministic search can run
fast. We have also argued that the space of options generated via nondeterminism
can be very simply constrained to manageable proportions. This section discusses
another feature of nondeterminism; namely, it enables a style of discussion not
available for purely deterministic systems.

Software design is a search through a space of options:

• That one requirement can be implemented many different ways and soft-
ware engineers may try and assess several alternatives before finding a good
choice.

• Different stakeholders have different views and different goals, and software
engineers have to navigate through this space of competing requirements.

• That the same specification may have incomplete sections representing choices
that have to be explored as the software matures.

How can nondeterminism help analysts explore this space of options? In its
simplest form, the answer is this: you can’t reason about options unless you can
access them. Deterministic systems generate one output and only offer one option.
Nondeterministic systems generate multiple alternative outputs, and we can learn
much by debating the differences between those options. To illustrate this point,
we will consider the extreme case where SELECT has been completely relaxed.
In this case, no MATCHed action is culled andevery possible actionis allowed.

Figure 16 illustrates this technique. That figure represents some knowledge
about economics. In that figure, the thin lines were created from the knowledge
of one expert, Dr. Thin, and the thick lines were created from the knowledge of
another expert, Dr. Thick. Also, squares denoteand-nodes: i.e. conjunctions
that follow some premise. Each variable of that figure has three states:up, down
or steady. These values model the sign of the first derivative of these variables.
Edges represent dependencies between variables, of which there are two types:

• Dr. Thin’s direct connection betweenflexibility andflexible work patterns
(denoted with plus signs) means Dr. Thin would explainflexible work pat-
ternsbeingupor downusingflexibility beingupor downrespectively.

28

task
switching

usability

flexible
work

patterns

maintainability

Dr. Thick

sharing of
information

performance

performance

flexibility

flexibility

usability

task
switching

maintainability

future
growth

sharing of
information

--

++----

++ ++

++

++

++

Dr. Thin

++

++

Figure 16: Viewpoints from two experts.

• Dr. Thick’s inverseconnection betweenflexibility andmaintainability(de-
noted with minus signs) means that Dr. Thick would explainmaintainability
beingupor downusingflexibility beingdownor up respectively.

Note that our experts disagree on certain points:

• Dr. Thin holds the standard view that future change requests are best man-
aged via a flexible system; i.e.

flexibility
++→ maintainability

• Dr. Thick takes the opposite view saying that when developers work in
very flexible environments, their bizarre alterations confuse the mainte-
nance team; i.e.

flexibility
−−→ maintainability

To better support a dialogue between these two feuding experts, we first com-
bine the two viewpoints into Figure 17. Next, we take some known input and
output conditions and see what can be consistently inferred. In the case where the
inputs areIN1= {performance=up, usability=down}, and the goals areGOALS1=
{task switching=up, future growth=up, sharing of information=down}, there are
five proofsP across figure 17 that can reach these goals, from those inputs:

• P.1 : performance=up, task switching=up

29

task
switching

flexible work
patterns

maintainability

performance

flexibility

usability

future
growth

sharing of
information

--

++ ----

++
++

++

++

++

Dr Thick + Dr. Thin

++

++

Figure 17: Union of the viewpoints of figure 16.

• P.2 : usability=down, flexibility=up, flexible work patterns=up, task switch-
ing=up

• P.3 : usability=down, flexibility=up, future growth=up

• P.4 : usability=down, sharing of information=down

• P.5 : performance=up, flexibility=down, flexible work patterns=down, shar-
ing of information=down

Note that these proofs for< IN1, GOALS1 > contain contradictory assump-
tions; e.g. flexibility=up in P.2 and flexibility=down in P.5 . Classical logic
would have us stop right here since, in the classical view, models that generate
contradictions are incoherent. However, using a technique calledgraph-based
abductive inference[85, 102], we can still make interesting inferences by sorting
these proofs into maximal subsets that contain no contradictory assumptions. This
process generates theworlds of beliefshown in Figure 18.

In Figure 18, each world is one what-if scenario. Note that world #1 covers
all our output goals while world #2 only covers two-thirds of our outputs. These
worlds tell us that in the case of< IN1, GOALS1 >, the dispute over influ-
ences onmaintainabilitydon’t matter since that part of the theory is not required
to reachGOALS1. Also, recalling World #1, we see that neither expert can ig-
nore the other. World #1 says that both Thick and Thin knowledge is required
to reach all ofGOALS1. With this knowledge, we can encourage the experts
away from irrelevant disagreements (e.g. the influences onmaintainability) and

30

task
switching=up

flexible work
patterns=up

performance=up

flexibility=up

usability=down

future
growth=up

sharing of
information=down

++ --

++

++

++

++

World 1: assume flexibility=up

++

++

task
switching=up

flexible work
patterns=down

performance=up

flexibility=down

usability=down

sharing of
information=down

++ --

++

++

++

++

World 2: assume flexibility=down

++

Figure 18: Worlds from figure 17. Ellipses denote the key assumptions that define
a world. World #1 contains the proofs that do not contradictflexibility=up; i.e.
P.1, P.2, P.3, p.4 . World #2 contains the proofs that do not contradict
flexibility=down; i.e. P.1, P.4, P.5 . Dashed lines denote inferences that
should be supported by the original model, but which are contradicted by the
current set of inputs and goals.

towards relevant agreements (e.g. knowledge from both experts is required to
reachGOALS1).

Note how this nondeterministic contradiction-tolerant multiple world approach
has guided our doctors to a point of collaboration, despite conflicting viewpoints.
Rather than focus on their obvious dispute (the effects of flexibility on mainte-
nance), we can show our doctors how to work together using other portions of
their viewpoints.

5.4 Nondeterminism and V&V

A common view is that nondeterminism is undesirable and must be avoided. We
disagree. V&V analysts will see more nondeterministic systems since nondeter-
ministic search can find solutions when complete search fails. Lest our V&V
analyst panics at the prospect of testing a nondeterministic system, we pointed
out that narrow funnels promise that the range of possible outputs of a system can
be easily constrained. Further, the key settings to those funnel variables can be
found very simply using methods like TAR2. Given that nondeterminism is fast,
and can be constrained, then this lets a V&V analyst explore the space of options
within a program using the multiple worlds reasoning discussed in the previous
section.

31

6 AI Software can be Complex

AI software solves hard problems. AI has always been at the forefront of com-
puter science research. Many hard tasks were first tackled and solved by AI re-
searchers before they transitioned to standard practice. Those examples include
time-sharing operating systems, automatic garbage collection, distributed process-
ing, automatic programming, agent systems, reflective programming and object-
oriented programming.

This tradition of AI leading the charge and solving the hard problems contin-
ues to this day. NASA’s deep space missions requireautonomous satellitesthat
don’t rely on ground control. For distant satellites or rovers such ground control
would be impractically slow.

To test their autonomy technology, NASA flew the Remote Agent Experi-
ment (RAX1) for two days using on-board AI control while that satellite was
60,000,000 miles (96,500,000 kilometers) from Earth. This trial was a step to-
ward robotic explorers of the21st century that are less costly, more capable and
more independent from ground control. RAX1 continually monitored the on-hard
hardware and readjusted the mission tactical goals in line the available hardware
and the mission’s strategic goals. RAX1 has three components:

• The plannertook general goals and determined detailed activities needed to
achieve the goals. The RAX1 trial included asking the planner to achieve
broad goals such as, “Find your position, and fire your ion engine whenever
practical.” If a hardware problem developed that prevents execution of the
plan, the planner made a new plan, taking into account degraded capabili-
ties.

• The executiveinterpreted the plans and added more detail to them, then
issued commands to the flight software, coordinating the three parts of
RAX1. Some commands turned the spacecraft to point in a different di-
rection. Other commands asked the onboard camera to take pictures of
asteroids and stars for navigation purposes.

• The LIVINGSTONEdiagnosismodule acted like a doctor, monitoring the
spacecraft’s health. If something went wrong, LIVINGTSTONE told the
Executive there is a problem and then the executive consults the “doctor”
for simple procedures that may quickly remedy the problem. For example,
if a camera does not respond, a quick fix would be to turn the camera off
and then on again. If this didn’t work, the executive asked the planner for a
new plan that still achieves mission goals.

32

Figure 19: Slicing in Grammatech’s CodeSurfer tool (seehttp://www.
grammatech.com/products/codesurfer/example.html).

6.1 V&V of Complex Software

Thebenefitsof complexity are clear. Some problems such as RAX1 are inherently
complex and require an extension to existing technology. Thecostof complexity
is that complex systems are harder to understand and hence harder to test. Com-
plex systems like RAX1 could hide intricate interactions which, if they happen
during flight, could compromise the mission. Three tools for revealing hidden in-
tricate interactions are discussed below:static analysis, runtime verification, and
model checking.

6.1.1 Static Analysis

In static analysis, compiler technology is used to trace through the possible pro-
gram pathways. One static analysis technique iscode slicingwhich is used to
reveal the code portions that are relevant to a particular set of variables or a func-

33

http://www.grammatech.com/products/codesurfer/example.html
http://www.grammatech.com/products/codesurfer/example.html

tion. For example, Grammatech’s CODESURFERr tool can find the codenot
reachable from themain function6. Such code is dead code and represents either
over-specification (i.e. analysts exploring too many special cases) or a code de-
fects (e.g. the wrong items are present in a conditional). In Figure 19 the code
sections reached bymain are shown with colored marks in the right-hand-side
of the display. Note that in this case, most of the code isnot reachable from the
main program!

There are several problems with static analysis:

• Manually exploring the reachable zone looking for problems is a tedious
and time-consuming task. Ideally, we should be able to offer our analysis
tool a succinct description offeatures of interestand then let it look for those
features.

• Static analysis reveals the superset of all possible program sections that can
be reached from some zone in a program. For any particular invocation of
a program, only a small subset of those regions are actually reached. Hence
conclusions about incorrect operations within the reachable zone are hard
to make.

• The problem with reasoning about incorrectness in the reachable zone is
even worse for programs supporting concurrency. Static analysis offers little
assistance in checking that within the reachable zones there doesnot exist
(e.g.) deadlocks.

6.1.2 Runtime Verification

Runtime verificationtools such as the JAVA PATH FINDER [60] and the JAVA
PATH EXPLORER [59], resolve some of the problems of static analysis. These
tools work in tandem with a special version of the JAVA virtual machine to in-
strument JAVA programs to automatically find (e.g.) concurrency errors such as
deadlock.

Runtime verification tools simplify the examination of the details of a running
system. For example, during the May 1999 RAX1 mission, the satellite dead-
locked in space, causing the ground crew to put the spacecraft on standby. The
ground crew located the error using data from the spacecraft. The JAVA PATH
FINDER used the same example to test runtime verification. The Lisp code of
RAX1 was coded up in JAVA, a portion of which is shown in Figure 20. The

6http://cayuga.grammatech.com/products/codesurfer/

34

http://cayuga.grammatech.com/products/codesurfer/

01 class Event {}
02 int count = 0;
03
04 public synchronized void wait_for_event() {
05 try{wait();\}catch(InterruptedException e){};
06 }
07
08 public synchronized void signal_event() {
09 count = (count + 1) % 3;
10 notifyAll();
11 } }
12
13 class Planner extends Thread{
14 Event event1,event2;
15 int count = 0;
16
17 public void run(){
18 while(true){
19 if (count == event1.count)
20 event1.wait_for_event();
21 count = event1.count;
22 /* Generate plan */
23 event2.signal_event();
24 } } }

Figure 20: The RAX error. From [60].

resulting JAVA program had 40 threads, each with 10,000 states. When combined
with the planner and the executive, this resulted in a search space too large for
most automatic V&V tools:10160 states in total. JAVA PATH FINDER found the
defect that caused the deadlock: a race condition at line 19 (the exact problem
is described in Figure 21). Note that a human code readermighthave found the
same error, but not in the 25 seconds (!!!) that it took JAVA PATH FINDER.

JAVA PATH EXPLORER is a generalization of Java PATH FINDER that auto-
matically searches from thefeatures of interestspecified by V&V analysts. These
features are expressed succinctly using atemporal logic notation. Temporal logic
is classical logic augmented with temporal operators such as[]X (alwaysX is
true),♦X (eventuallyX is true),©X (X is true at the next time point),X U Y :
(X is true untilY is true). For example, consider the following constraint on an
elevator:

Always, the elevator door never opens more than twice between the
source floor and the destination floor.

If P is the elevator doors opening andQ is the arrival at the source floor andR
arrival at the destination floor, then the temporal logic expression of Figure 22

35

Figure 20 shows two JAVA classes. TheEvent class has a
local counter and two synchronized methods, one for wait-
ing on the event and one for signaling the event, releasing
all threads having called wait for event. In order to catch
events that occur while tasks are executing, each event has
an associated event counter that is increased whenever the
event is signaled. A task then only calls wait for event in
case this counter has not changed, hence, there have been
no new events since it was last restarted from a call of
wait for event. The body of thePlanner ’s run method
contains an infinite loop, where in each iteration a condi-
tional call of wait for event is executed. The condition is
that no new events have arrived, hence the event counter is
unchanged.
When examining the RAX1 deadlock defect, the er-
ror trace found by JAVA PATH FINDER showed that
if the RAX1 planner first evaluates the testcount ==
event1.count at line 19 to true then, before the call
of event1.wait for event() , the executive signals
the event, the event counter is increased notifying all wait-
ing threads. However, since there are no waiting threads
yet, the planner now unconditionally waits and misses the
signal.

Figure 21: The deadlock error of Figure 20. Text adapted from [60].

models our constraint of the elevator doors. Such a formulae looks intimidat-
ing but can be easy to write. Dwyer, Avrunin & Corbett [41, 42] have identified
temporal logic patternswithin the constraints seen in many real-world proper-
ties models. For each pattern, they have defined an expansion from the intu-
itive pseudo-English form of the pattern to a formal temporal logic formula. In
this way, analysts are shielded from the complexity of formal logics. For ex-
ample, writing the above query is a simple matter: just look up the “bounded
existence” temporal logic pattern athttp://www.cis.ksu.edu/santos/
spec-patterns/ltl.html and extract the expression associated withtran-
sitions to P-states occur at most 2 times between Q and R.

Standard practice is to take the temporal formulae, negate it, then look for
evidence that the negated formulae can be satisfied. A runtime trace that satisfies
the negated formulae is acounter-examplethat offers a specific example of how a
program can fail.

Standard practice is also to store the negated counter example as a as a directed

36

http://www.cis.ksu.edu/santos/spec-patterns/ltl.html
http://www.cis.ksu.edu/santos/spec-patterns/ltl.html

[]((Q ∧ ♦ R) → ((¬ P ∧ ¬ R)
U (R ∨ ((P ∧ ¬ R)

U (R ∨ ((¬ P ∧ ¬ R)
U (R ∨ ((P ∧ ¬ R)

U (R ∨ (¬ P ∨ R))))))))))

Figure 22: Always, the elevator door never opens more than twice between the
source floor and the destination floor.

graph called aBucci automaton. Within the automaton, the current state of the
program is indicated by a single pointer to one of the nodes in that graph. New
output from the program can be passed to the current state, and that state can
check if any of itsout-edgescan use that output. If so, the current state jumps to
the state at the other end of the usable out-edge. A few of the nodes in this graph
are marked as “accept states” and if the current state ever arrives at an accept state,
a counter example can be reported.

Note that without a tool like the PathEXPLORER, a V&V analyst might need
to build a very large log tracing all the variable changes within a system, then ex-
plore that log manually using (e.g.) SQL. With PathEXPLORER, the disk mem-
ory required for that log can be reclaimed. Further, the exploration of the log with
SQL is superfluous since the output assessment process has been automated into
an incremental monitoring device (the Bucci automaton).

Runtime verification tools such as those discussed above are very new, not
widely used, and not fully documented. Also, the current generation of runtime
verification tools require instrumentation of some virtual machine. A more gen-
eral and mature approach, with more support tools and documentation ismodel
checking. Model checking makes no assumptions of an instrumented virtual ma-
chine.

6.1.3 Model Checking

Model checking is a method invented by Edward Clarke in the 1980s to test asyn-
chronous protocols [28]. Model checking requires the construction of two mod-
els:

1. Thesystems modelwhich is some abstract description of the essential char-
acteristics of a program.

37

2. The properties modelwhich is a set of constraints that should hold across
the systems model. The properties model is often expressed as a temporal
logic constraint.

A model checker searches all pathways of the systems model looking for
ways to violate the properties model. If successful, the model checker returns
the counter examples showing exactly how an invariant is violated. Such counter
examples are useful in localizing and repairing faults.

The benefits of model checking come at a cost that is often prohibitively ex-
pensive. These costs including thewriting cost, therunning costand there-writing
cost. Scarce and expensive PhD-level mathematical expertise may be required to
write the formal temporal logic of the properties model. Once expressed, auto-
matic methods such as the SPIN model checker [64] can search an formal repre-
sentation of a program to find counter-examples to the supplied constraint. This
search explores all the interactions within the program. In the worst case, the num-
ber of such interactions is exponential on the number of different assignments to
variables in the system. Hence, therunning costof this query can be excessive.
This largerunning costoften forces analysts to rewrite and shorten the formal
models or formal constraints. Such a rewrite incurs therewrite costand may ig-
nore some, potentially significant, system detail.

We will discuss below the declarative model-based nature of AI systems. Such
declarative models are simpler to analyze than (e.g.) the quirkier constructs in the
“C” language. Hence, it can be significantly easier to write the systems models.
Automatic tools can usually be quickly written to convert the AI model into the
format required for a model checker. However, the writing cost of the properties
model remains, as does the running and rewrite cost.

Much research has tried to reduce these costs. For example:

• The temporal logic patterns work of Dwyer, Avrunin & Corbett [41, 42]
discussed above.

• Simplified modelling environments have been developed such as SCR [35,
61,62] or simple influence diagrams [98] where users can express their mod-
els in simple and intuitive framework. Models written in these toolkits can
be mapped into model checkers such as SPIN, thus combining easy model
specification with exhaustive formal verification.

• The writing cost of the systems model can disappear to zero if that model
can be auto-extracted from the source code. For example, the BANDERA
system extracts systems models from JAVA source code via a consideration
of the JAVA virtual machine [33].

38

These tools reduce thewriting cost but don’t necessary reduce therunning
costor therewriting cost. Therewrite costis incurred only when therunning cost
is too high and the models or constraints must be abbreviated. There is no guaran-
tee that model checking is tractable over the constraints and models built quickly
using temporal logic patterns and tools like SCR. Restricted modelling languages
maygenerate models simple enough to be explored with model checking-like ap-
proaches, but the restrictions on the language can be excessive. For example,
checking temporal properties within simple influence diagrams can take merely
linear time [98], but such a language can’t model common constructs such se-
quences of actions or recursion. Hence, analysts may be forced back to using
more general model checking languages. Unfortunately, despite decades of work
(see Figure 23), the highrunning costof such general model checking persists.

Despite these limitations, model checking is a widely used tool for AI systems
at institutions like NASA. For a sample of such applications, see the proceed-
ings of the recent AAAI 2001 Spring Symposium on Model-Based Validation of
Intelligence7.

7 Adaptive AI Systems

Not only can AI systems be complex, they can beadaptive; i.e. they can change
their own internal logic at runtime. Adaption can complicate V&V. For example,
suppose a test engineer takes two months to certify version 1.0 of a device. To
her surprise and alarm, just before it is used, version 1.1 is released. Our test en-
gineer, who is a dedicated professional, hurriedly studies version 1.1. One month
into her work on version 1.1, version 1.2 is released. Our test engineer further
discovers that version 1.3 is due, any week now. She contacts her management
and complains “I can’t certify a device that is constantly changing”.

This is the dilemma of testingadaptive systems. AI systems containing a
machine learningmodule can adjust themselves at runtime. In a way, adaptation
is an extreme form of nondeterminism discussed in§5. A nondeterministic system
can generatedifferentoutputs from thesameinput. An adaptive system that can
generate different outputs after each adaptation.

Adaptive systems have the benefit that:

• The software can significantly tune its behavior. For example, a planning
system might find a new method to generate better plans in less time.

7http://ase.arc.nasa.gov/mvi/

39

http://ase.arc.nasa.gov/mvi/

Each of the following techniques has proven to be useful in
reducing the runtime cost of model checking or variations
on model checking. However,

• Abstraction or partial ordering: use only the part
of the space required for a particular counter-
example. Implementations exploiting this tech-
nique can constrain how the space is traversed [56],
or constructed in the first place [131].

• Clustering: divide the systems model into sub-
systems which can be reasoned about sepa-
rately [27,30].

• Meta-knowledge: study only succinct meta-
knowledge of the space. One example used an
eigenvector analysis of the long-term properties of
the systems model under study [66].

• Exploit symmetry: find properties in some part
of the systems model, then reuse those counter-
examples if ever those parts are found elsewhere
in the systems model [29].

• Semantic minimization: replace the space with
some smaller, equivalent space. For example, the
internal memory requirements of a model checker
can be reduced if the state space is compacted us-
ing binary decision diagrams [17]. Another system
of interest is the BANDERA system [33] that re-
duces both the systems modelling cost and the ex-
ecution cost by automatically extracting (slicing)
the minimum portions of a JAVA program’s byte-
codes which are relevant to particular properties
models.

While the above techniques have all been useful in their
test domains, they may not be universally applicable. Cer-
tain optimizations, such as those of [66], require expensive
pre-processing. Also, these methods may rely on certain
combinatorial features of the system being studied. Ex-
ploiting symmetry is only useful if the system under study
is highly symmetric. Clustering generally fails for tightly
connected models. Hence, in the general case, it seems
that only small models can be assessed using model check-
ing techniques.

Figure 23: Experiments in reducing the state-space explosion problem in model
checking.

40

• The software can adapt to new situations not seen during design time. For
example, a robot that moves an object around might learn to push objects
with its torso if its arms malfunction.

However, the cost of adaptive systems is that the adaption might render obsolete
any pre-adaption certification.

This section focuses on V&V of adaptive systems8. In essence, the argument
will be that V&V of adaptive systems shouldnot try to certify the latest product
of the latest adaption. Instead, the V&V of adaptive systems mustcertify the
adaptive process. Our proposed certification process will be to check if the test
engineer can trust that the adaption process will produce adequate new models.
That checking process will be summarized below, after an introduction to learning
algorithms and some case studies using different learners.

7.1 Introduction to Learning

Two properties of AI system make them particular suitable to adaption. Firstly,
knowledge-levelAI systems can reflect over their goals at runtime. This means
that if a knowledge-level system adapts itself, it can use its knowledge of system
goals to automatically evaluate the adaptation; e.g. by checking if more goals can
be reached using fewer resources.

Secondly,model-basedAI systems often use a simple uniform declarative se-
mantics for their models. This simplifies the adaptation problem since only a
small number of adaptive operators are required to modify a system. For exam-
ple, consider a logic program of the form

Goal if PreCondition1 andPreCondition2 and . . .

Two operators are enough to extensively adapt this program:specializationand
generalization:

• Undesired behaviors can be removed byspecializingthe preconditions; i.e.
increasing the number of preconditions.

• Desired behavior which was not achieved can be reached viageneralizinga
pre-condition; i.e. removing one or more of the preconditions.

8For a broader review of the general field of machine learning methods, see [40, 82, 104, 109,
153]

41

Operator Preconditions Postconditions
PUSH(obj,loc) At(robot,obj) AND

Clear(obj) AND
ArmEmpty

At(obj,loc) AND
At(robot,loc)

CARRY(obj,loc) At(robot,obj) At(obj,loc) AND
At(robot,loc)

WALK(loc) None At(robot,loc)
PICKUP(obj) At(robot,obj) Holding(obj)

PUTDOWN(obj) Holding(obj) NOT Holding(obj)
PLACE(obj1,obj2) At(robot,obj2)

AND Holding(obj2)
On(obj1,obj2)

Figure 24: Operators available to our adaptive robot.

Operators used for each macro
macro push carry walk pickup putdown place

Move object F F
Move robot F
Clear object F

Object on object F
Get arm empty F F
Hold an object F

Figure 25: Planning macros.

Such a logic-based adaptation framework dates back to at least Shapiro [135].
The following example illustrates adaption via specialization. Consider an AI

planning robot manipulating objects in a room containing a table holding up two
objects9. For argument’s sake, we will say that we want to move the table and
the objects to another room. Before we can move the table we need to move the
two objects. Our robot can access a set ofoperatorsthat can change state in a
room. Our robot operates via MATCH-SELECT-ACT cycle which reflects over
the operators of Figure 24. Note that each operator haspreconditionsdescribing
when that operator is applicable andpostconditionsthat describe the effects of the
operator. At runtime, our AI system must build asequenceof operators which
take us from some initialstart state(e.g. objects on table) to somegoal state(e.g.
objects on table in another room). At each step of the sequence, thepreconditions
must be satisfied to enable the next step.

These operators might be too low-level to explain to human programmers, so
we might define a macro language like Figure 25 that maps higher-level constructs
into the operators. Note that there are two ways tomoveand object: we canpush

9This example is adapted from [71]

42

or carry it. Suppose we originally designed the planning robot for houses where
all objects have the same weight. Suppose further the environment changes and
now the robot faces an environment where objects have very different weights.

After a few days in the new environment, our robot notices that thatcarry-
ing heavy objects results in more wear and tear thatpushingheavy objects. It
would sensible to let our robot automaticallyspecializeits operators with the new
preconditions shown here in italic:

Operator New preconditions
PUSH(obj,loc)= At(robot,obj) AND Clear(obj) AND

ArmEmpty AND NOT light(obj)
CARRY(obj,loc)= At(robot,obj) AND light(obj)

The above example demonstrated small-scale adaptation where only a small
part of a current model was changed. Such small scale adaptations are typical in
deductive learningschemes such as EBG [108,149] and “chunking” [73]:

• EBG is short forexplanation-based generalizationwhere program traces are
studied for short-cuts. For example, if a program always calls six operators
in the orderO1, O2,. . .O6, then EBG might replace these with one new
operatorO7 with the preconditions ofO1 and the postconditions ofO6.

• “Chunking” is a rule-based programming technique that seeks patterns of
rules commonly fired in a certain sequence. The rules are then “chunked”
into a super rule that leaps the inference from the first rule to the last rule in
the sequence.

The opposite of deductive learning isinductive learning. Inductive learners
such as genetic algorithms [37,57], neural nets [63], and decision tree learners [31,
124] create a summary model from input training examples. Inductive learning
schemes are typically characterized by large-scale adaptation of a model since
these learners ignore pre-existing knowledge and build an entirely new model
from scratch.

For example, the decision tree of Figure 26 was automatically built by the
C4.5 inductive decision tree learner [123] from a log of golf playing behavior. We
see that we do not play golf on high-wind days when it might rain. This learner
has its own internal measures of the information content of each attribute in the
log; i.e. outlook, temp, humidity andwindy . If an attribute does not
satisfy these internal measures it is discarded; e.g.temp does not appear in the
generated decision tree. The problem with (e.g.) ignoring an attribute is that the
generated model may disagree with established wisdom in a field; e.g. that heat is
an important factor in determining golf playing behavior.

43

INPUT:

#outlook, temp, humidity, windy, class
#------- ---- -------- ----- -----
sunny, 85, 85, false, dont_play
sunny, 80, 90, true, dont_play
overcast, 83, 88, false, play
rain, 70, 96, false, play
rain, 68, 80, false, play
rain, 65, 70, true, dont_play
overcast, 64, 65, true, play
sunny, 72, 95, false, dont_play
sunny, 69, 70, false, play
rain, 75, 80, false, play
sunny, 75, 70, true, play
overcast, 72, 90, true, play
overcast, 81, 75, false, play
rain, 71, 96, true, dont_play

OUTPUT (estimated error=38.5%):

start

outlook=overcast

outlook=sunny

outlook=rain dont_play

playhumidity <= 75

humidity > 75

windy = true

windy = false

Figure 26: Decision-tree learning. Classified examples (above) generate the deci-
sion tree (below).

44

A)
0

10

20

30

10K 20K 30K 40K 50K%
 E

st
im

at
ed

 e
rr

or

B)

2000

4000

6000

10K 20K 30K 40K 50K

T
re

e
si

ze

Figure 27: Error rates (top) and number of nodes in the learnt decision tree (bot-
tom) seen in one decision tree learning study [101].

Newer styles of inductive learning accept as input some background knowl-
edge, which the learner can extensively modify based on the available training
data. For example,bayesian tuning[49] and inductive logic programming[12]
let users initialize a model with a simple causal network or intricate horn clause
expressions.

7.2 Adaption and V&V

7.2.1 Do you Have Enough Data?

One way to assess an adaptive system is to ask if the system is seeing enough
data to make reasonable adaptations. Inductive techniques are typically very data
hungry: the efficacy of the inductively learnt model can never be better than the
quality of the input examples. Hence, the more examples, the better the learnt
model.

We have seen the results of learning on too little data above. C4.5 estimated
that the decision tree shown in Figure 26 will have a 38.5% error rate of future
cases. We should expect such a large errors when learning from only 15 examples.
In general, C4.5 needs hundreds to thousands of examples before it can produce
trees with low errors.

When we build models from data, we should increase the sample size till the
estimated error drops to an acceptable level. For example, Figure 27.A shows

45

Changes in the learnt tree’s. . .
domain . . . size . . . classification error
demon 0.97 0.51
wave 1.91 0.95
diff 1.46 0.69

othello 1.68 0.8
heart 1.61 0.65
sleep 1.73 0.91
hyper 1.74 0.83
hypo 1.45 0.85

binding 1.51 0.82
replace 1.38 0.8
euthy 1.33 0.61
mean 1.52 0.77

Figure 28: Impact of learning a decision tree fromN or 2N examples. From [22].

the error rate of decision trees generated using C4.5 after learning from 10,000
examples, then 20,000 examples, and all the way up to 50,000 examples. Such
curves can be used to determine when enough data is enough. Figure 27 suggests
that in that domain, the benefits of using more than 10,000 examples was marginal.

On the other hand, Catlett cautions that there is always a case for using more
examples [22]. In his study, he gave a machine learner N or 2N examples from
different domains. He found that you should never disable adaptation since, in
nearly all cases, more experience lead to much better and bigger models with
fewer errors (see Figure 28).

While we don’t dispute Catlett’s findings, pragmatic considerations often im-
pose a restriction the size of the data given to a machine learner:

• If the example set grows very large (i.e. thousands of examples or more),
then considerable manual knowledge engineering effort may be required to
prepare the data for the inductive learner [152].

• In many domains, the available data sets can be very small. For example,
in software engineering effort estimation, data set sizes are usually dozens,
not hundreds, of examples [20,140].

• Sometimes, large data sets generate awkwardly large models. Figure 27.B
shows what happened in one case study when decision trees were built from
tens of thousands of examples. While an automatic program can process a
decision tree with (e.g.) 4000 nodes, such a tree is too large for a human to
read. We will return to this issue ofreadability later in this article

46

7.2.2 External Validity

Another issue with the size of a data set is how much is used fortraining and how
much is used fortesting. One goal of machine learning is to generate models that
have some useful future validity. To test if that goal has been meet, the generated
model should be tested on data not used to built the model. Failing to do so can
result in a excessive over-estimate of the learnt model. For example, Srinivasan
and Fisher report an 0.82 correlation (R2) between the predictions generated by
their learnt decision tree and the actual software development effort seen in their
training set [140]. However, when that data was applied to data from another
project, that correlation fell to under 0.25. The conclusion from their work is that
a learnt model that works fine in one domain may not apply to another.

One standard method for testing how widely we might apply a learnt model is
N-way cross validation:

• The training set is divided intoN buckets. Often, N=10.
• For each bucket in turn, a treatment is learned on the otherN − 1 buckets

then tested on the bucket put aside.
• The prediction for the error rate of the learnt model is theaverageof the

error rate seen during the N-way study.

In essence, N-way cross validation is orchestrating experiments in which the learnt
model is tested ten times against data not seen during training.

A learnt model can pass a N-way cross validation test, but sill not be externally
valid. For example, Figure 29 and Figure 30 show decision trees learnt in different
domains that predict fault software modules. While thetask in each domain is
different, theavailable attributesin each domain was different. Hence, the trees
are of different shapes and use different attributes. The lesson here is the same as
above: analysts should take care when importing models learnt in other domains.

7.3 Case Study

The detailed case study of Burgess and Lefley [20] illustrates many other issues
in evaluating adaptive systems. In their work, they applied different learners to
the same data set and assessed the merits of each. Their test domain was software
cost estimation: given particulars of different projects, they asked their learners to
produce an estimate of project development time. The learners in that study were:

NN: A neural network algorithm that adjusts weights between a network of sim-
ple nodes which “fire” if the sum of the input weights pass some threshold.

47

cost&faults
=high

cost&faults
=not high

cost&faults
=?

cyclomatic
complexity

<7

[13..26)

function plus
module calls

(FC plus MC)

[7..13)

operators
>=26

[18..35)

<18

>=35

[26..31)

[31..34}

<26

module
calls
(MC)>=34

[4..10)

<4

>=10

Figure 29: Predicting modules with high cost modules and many faults. Data from
16 NASA ground support software for unmanned spacecraft control [146]. These
systems were of size 3,000 to 112,000 lines of FORTRAN and contained 4,700
modules.

GP: A genetic programm algorithm which tried many generations of combina-
tions and mutations of a mathematical equation that computes project de-
velopment time.

LSR: A linear standard regression algorithm. Normally, regression is not usu-
ally termed a “machine learner” (exception: [14]) but Burgess and Lefley
included it in their study for comparison purposes.

Burgess and Lefley offered several assessment criteria for their studied learn-
ers:accuracy, readability, consistent convergenceandease of configuration. These
criteria, and how they were applied in the Burgess and Lefley study, are discussed
below.

7.3.1 Accuracy of the Learnt Model

Burgess and Lefley collected the statistics shown in Figure 31 by averaging values
seen 10 runs of the system. In that figure, correlation was was the standardR2

48

fault prone

not fault prone

#include
files

<=27

new+changed
SLOC

>27

proportion
of sites using
this module

>30

max control
structure
nesting

<=30

> 0.005

<=0.005

<=6

#design
changes

>6
<=10

#control
statements

>10 >630

#include
files

<=630

>34

<=29

(29..34]

estimated
error=

27% (approx)

Figure 30: Predicting fault-prone modules [72]. Learnt by the CART tree
learner [14] from data collected from a telecommunications system with> 10
million lines of code containing a few thousand modules (exact details are propri-
etary confidential). Estimated error comes from 10-way cross-validation studies.

statistic andPred(25) was the percentage of predictions that fell within 25% of
the actual value.

Figure 31 shows that genetic algorithms produced thebestfit to the dataR2 =
0.75 while wereworst at coming near the actual figures (Pred(25) = 23.6%).
Such a strange result may result when the target model has discontinuities and
does not fit a standard regression model.

Note thathow a learnt model is assessed can crucially effect the evaluation.
For example, if we desired to generate a detailed expression for the connection
of project factors and development time, the equation learnt by the GP might be

Metric LSR NN GP
Correlation 0.56 0.64 0.75
Pred(25)% 55.6 55.6 23.6

Figure 31: Accuracy assessment data on models learnt by Burgess and Lefley [20].

49

t

lstat=<11.66

lstat>11.66

high

medlow

medhigh

low

rm=<6.54

rm>6.54

dis=<1.5106

dis>1.5106 lstat=<7.56

lstat>7.56

ptratio=<19.6

ptratio>19.6

rm=<6.142

rm>6.142

indus=<10.01

indus>10.01

tax>256

tax=<256

age=<26.3

age>26.3

crim=<0.13158

crim>0.13158

rad=<1

rad>1

zn=<17.5

zn>17.5

dis=<3.9454

dis>3.9454

ptratio=<17.4

ptratio>17.4
dis>3.9342

dis=<3.9342 tax=<233

tax>233

rm=<5.99

rm>5.99

age=<26.3

age>26.3

rm=<6.319

rm>6.319

age=<52.6

age>52.6

rm>7.061

rm=<7.061

lstat=<5.39

lstat>5.39

rad>4

rad=<4

indus>6.41

indus=<6.41

rm>6.678

rm=<6.678

age=<22.3

age>22.3

rad=<1

rad>1

crim=<0.06162

crim>0.06162

nox=<0.435

nox>0.435

lstat=<8.43

lstat>8.43

indus=<2.97

indus>2.97
ptratio=<17

ptratio>17
b=<381.32

b>381.32

lstat=<16.21

lstat>16.21

indus=<4.15

indus>4.15

zn>45

zn=<45 rm=<5.878

rm>5.878

b=<240.52

b>240.52

b=<109.85

b>109.85

chas=<0

chas>0

zn=<21

zn>21

lstat=<14.37

lstat>14.37

indus=<4.95

indus>4.95

rad=<4

rad>4

crim=<1.27346

crim>1.27346

dis=<1.5331

dis>1.5331

lstat=<14.19

lstat>14.19

lstat=<14.67

lstat>14.67

ptratio=<19.1

ptratio>19.1

b=<382.44

b>382.44 dis=<2.4329

dis>2.4329

b=<394.23

b>394.23b=<366.15

b>366.15

age=<59.7

age>59.7

nox>0.585

nox=<0.585

chas>0

chas=<0

age=<49.3

age>49.3

lstat>22.6

lstat=<22.6

crim=<0.22212

crim>0.22212

rad=<5

rad>5

dis=<2.4786

dis>2.4786

Figure 32: A learnt decision tree. Classes (right-hand-side), top-to-bottom, are
“high”, “medhigh”, “medlow”, and “low” This indicates median value of owner-
occupied homes in $1000’s. Decision tree learnt from the 506 cases in HOUSING
example set from the UC Irvine repository (http://www.ics.uci.edu/
˜mlearn/).

50

http://www.ics.uci.edu/%CB%9Cmlearn/
http://www.ics.uci.edu/%CB%9Cmlearn/

the best. However, if we sought an oracle that offered the best approximation, the
LSR or NN might be best. Analysts should therefore develop and audit a range of
assessment criteria with their target user community before applying some criteria
to a learnt model.

7.3.2 Learning and Consistent Convergence

Suppose we are monitoring the progress of a learner and we see that the error rate
of the current version of a learnt model is converging gracefully towards some
plateau. Observing such a convergence, we might have some confidence that the
learner’s conclusions are stable and can be trusted.

Not all learners exhibit graceful convergence:

• Learners that use random search can leap around within the learning pro-
cess. For example, the GP methods used in the Burgess and Lefley study
randomlymutatea small portion of each generation of their models.

• The gradient descent method used by NN can “shoot passed” the correct
model if the steps of the gradient descent are too enthusiastic.

Burgess and Lefley report that in ten runs of their NN and GP systems, the
former usually converged to the same conclusion while the GP could generate
different answers with each run.

7.3.3 Learning and Ease of Configuration

Learners are programs and programs often require configuration settings. A com-
plaint against NN learning is that the configuration can be complicated and may
include issues such as:

• What is the best size of steps in the gradient descent?
• How many layers in the network?
• How many nodes in each node?
• What is shape of the threshold function used in each node?
• etc.

Burgess and Lefley commented that their GP learner was easier to configure
than their NN learner, while the regression system (LSR) was easiest of all to
configure.

51

7.3.4 Learning and Readability

Different learners report their learnt models in different ways. Burgess and Lefley’s
GP system outputted an equation that predicted software development effort from
domain attributes. If is fundamentally very difficult to extract such a high-level
description of a NN’s knowledge since domain concepts are spread out across the
network on the edge weights. Hence, Burgess and Lefley comment that the GP
output was more readable than NN.

7.4 Readability and Treatment Learners

Learners that optimize for readability can take a very different form to traditional
learners that optimize for expressiveness in the output model. Menzies et.al. have
found that (e.g.) decision tree learners can generate overly-complex models. In
their observations, business users often request summaries of even small-sized de-
cision trees. For example, when faced with a C4.5 decision tree such as Figure 32,
business users may look puzzled and ask for an executive summary of the essen-
tial features of the learnt tree. The TAR2treatment learner[47, 65, 83, 92–95]
generates such summaries and seeks thesmallestnumber of attribute ranges that
mostselect for preferred classes andleastselect for undesired classes. As we shall
see, this output may be very brief indeed.

For example, the decision tree of Figure 32 was learnt from 506 examples
of houses in Boston. Each house was rated into one of four value ratings. The
distribution of these ratings are shown on the left of Figure 33: 21% of the houses
were in thelowestclass; 29% were in thehighestclass; and the other houses
fell in-between. Treatment learners seek ways to change the ratios of classes.
Technically, atreatmentis a constraint which, if applied to the training set, selects
a subset of the training examples. A treatment isbest if it most improvesthe
distribution of classes seen in the selected examples. For example, the middle
histogram of Figure 33 shows the ratio of housing types after applying the best
treatment (Equation 1) found by TAR2 from the housing dataset:

(6.7 ≤ RM < 9.8) ∧
(12.6 ≤ PTRATION < 15.9) (1)

This best treatment advises us to favor houses with 7 to 9 rooms in suburbs with a
parent-teacher ratio in the local schools of 12.6 to 15.9. Note that under that best
treatment, none of the 38 selected houses fall into the lowest class while 97% fall
into the highest class.

52

baseline baseline + Equa-
tion 1

baseline + Equa-
tion 2

0
25
50
75

100

21 21 29 29

0
25
50
75

100

0 0 3

97

0
25
50
75

100
98

1 1 0

506 examples 38 examples 81 examples

Figure 33: Treatments learnt by TAR2 using the data used in Figure 32. That
dataset had the class distribution shown left-hand-side. Actions that most in-
crease/decrease housing values are shown in the middle/right columns (respec-
tively).

By reversing the internal scoring of the classes, a treatment learner can also
find theworst treatment; i.e. the constraint thatmost degradesthe distribution
of classes seen in the selected examples. For example, the right histogram of
Figure 33 shows the ratio of housing types after applying the worst treatment
(Equation 2) found by TAR2 from the housing dataset:

(0.6 ≤ NOX < 1.9) ∧
(17.16 ≤ LSTAT < 39.0) (2)

This worst treatment advises us to avoid houses in suburbs with an atmospheric
nitrous oxide levels of 0.6 to 1.9 parts-per-10-million and suburbs with a living
standard of 17.6 to 39.0. Note that under that worst treatment, none of the 81
selected houses fall into the highest class while 98% fall into the lowest class.

TAR2 scales well. The technique was developed in order to let humans browse
the trees learnt in Figure 27.B. TAR2 could reduce those trees to a few histograms
like Figure 33 and show them to users in under one page [101].

The central claim of TAR2 is that treatments are easier to read and understand
than decision trees. While decision trees offer elaborate and detailed descriptions
of different classes, treatments offer succinct summaries of the best and worse
situation within a training set. The reader may care to pause and consider whether
they prefer to read the complex decision tree of Figure 32 or the tiny treatments
shown above as Equation 1 and Equation 2.

53

7.5 Learning to Trust Adaption

The goal of this section on V&V and adaptive systems was to outline the circum-
stances when a test engineer might trust that an adaptive system was trustable.
There are several questions a V&V analyst can ask to ensure that trust:

• What is decay rate of the errors seen in the learnt model viewed as a func-
tion of number of examples (e.g. Figure 27.A)? If error rate is high and
not decaying, then the learner is not seeing enough examples to learn effec-
tively.

• What is the external validity of the learnt model? If the N-way cross-
validation results are not promising, then the learnt model may fail in future
cases.

• How might different users view the results of the learner? This will influ-
ence the accuracy criteria used when measuring the model.

• How well does learner converge? If the learning curve is not graceful, then
the learner’s results might be unpredictable.

• How easy is it to configure the learner?
• Is the output of the learner readable enough for the target audience? If the

learnt model is to be auto-converted to (e.g.) “C” code, then the model
can be very complicated indeed. However, if a human is to read the learnt
model, then perhaps techniques like treatment learning should be employed.

In summary, a test engineer might decide to trust an adaptive system when:

• It can be demonstrated they they are getting enough examples to learn ade-
quate models;

• The N-way cross validation results are good;
• The learner is being assessed according to a criteria endorsed by the user;
• The learner converges gracefully to its conclusions;
• The user can read and understand the learnt model.

8 AI is Software

Having stressed the unique features of AI systems, it is wise to recall that AI soft-
ware is still software and much is known about V&V of software. Any software
project that violates known norms in the software development process is at risk
and requires elaborate V&V.

54

Previous sections in this article focused on the special features of AI. This sec-
tion discusses the use of some norms and their implications on the V&V process.
Note that there isnothing specialin this section about AI systems and that is the
point: many established software assessment practices can and should be applied
to AI systems.

There are several such oracles for checking a project against established norms.
For example, Steve McConnell organized and documented a debate on the best
influences on software engineering [79]. From that dialogue, we can see that a
project is more likely to have problems if it ignores the following accepted best
practices:

Reviews and inspections:Unstructured readers seeking all types of bugs in source
code can get distracted and confused by the open-ended nature of their
quest. On the other hand, if different readers focus on different classes
of bugs, then suchstructured reading methodscan result in very high defect
detection rates (defect detection capability is the percentage of defects that
are latent in the artifact that is being inspected that are detected) [5,46].

Information hiding: Good designs don’t show everyone every detail. Rather,
they only present information on aneed to know basis[117]. Whereas other
design approaches focus on notations for expressing design ideas, informa-
tion hiding provides insight into how to come up with good design ideas in
the first place.

Incremental development: Often users can’t see that a project is running off the
rails unless they can see it running. Software projects that never generate in-
terim deliverables run the risk of delivering the wrong product. Any number
of standard methods exist for encouraging incremental development includ-
ing incremental compilers; the spiral model of software development [9];
and use-case driven development [67]. More recently, other methods have
began to be emphasized such as daily builds, open source methods [125],
agile methods [11] in general, or extreme programming [6] in particular.

User involvement: Users find problems and the budget to solve those problems.
Developers spend that budget to build software solutions to those prob-
lems. Software development that ignores users can ignore the real problems.
There are many ways to ensure user involvement such as user-interface pro-
totyping, co-locating users with the developers and use-cases based devel-
opment.

55

rely= rely= rely= rely= rely=
very low nominal high very
low high

sced= very
low

0 0 0 1 2

sced= low 0 0 0 0 1
sced= nomi-
nal

0 0 0 0 0

sced= high 0 0 0 0 0
sced= very
high

0 0 0 0 0

Figure 34: A Madachy table. From [77]. This table reads as follows. In the ex-
ceptional case of high reliability systems and very tight schedule pressure (i.e.
sced=low or very lowand rely= high or very high), add some increments to
the built-in parameters (increments shown top-right). Otherwise, in the non-
exceptional case, add nothing to the built-in parameters.

Barry Boehm’s COCOMO project has generate several other oracles for check-
ing a project against those norms. Two such oracles are the COCOMO multipliers
and the Madachy risk model:

The COCOMO multipliers: For example, based on regression models gener-
ated from 161 software projects, Boehm’s has identified a set ofmultipliers
that capture the impact of some factors on software development; e.g. losing
highly productive programmers can increase development effort by a factor
of up to 3.53. These multipliers can be used to test if a currently success-
ful software team will have problems in some new project [10, 150]. For
example, say the budget for the new project is be based on prior successful
experience. This budget is thenmultipliedby the Boehm factors represent-
ing the changes from the old project to the new project. For example, if
the most productive team members are not available for the new project,
the new budget could be 3.53 times as large as the initial budget predic-
tion. More V&V effort is required for projects that fall below the multiplied
budget.

The Madachy Model: The Madachy model of software project management is-
sues [77]. This model outputs a numeric index representing how concerned
an experienced analyst might be about a particular software project. The

56

model contains 94 tables that implement a context-dependent modification
to internal COCOMO parameters. Figure 34 operationalizes one of the 94
Madachy heuristics: i.e. software that must be highly reliable should not be
developed under excessive schedule pressure10. The model can be accessed
on-line athttp://sunset.usc.edu/research/COCOMOII/expert_
cocomo/expert_cocomo2000.html .

The problem with using established norms from other projects is that they may
not apply to the current project [99]. However, that should not stop developers
seeking such norms. As well as studying the above oracles, developers should
keep their own metrics. Such incrementally acquired project-level metrics can
reduce the cost of V&V. For example, Menzies & diStefeno found that in one
project, if V&V analysts restricted their code reviews to modules of more than
18 lines of code, then they would be 4.5 times more likely to be reading code
containing defects [90].

9 Summary and Challenges

Now that this review is nearly finished, what has been achieved? What have we
learnt about the current practice and future challenges for V&V for AI?

The premise of this review was that AI systems may contain certain special
features as:

1. A declarative model;
2. Very early life cycle executables;
3. Knowledge-level content;
4. Nondeterminism;
5. Great complexity
6. Adaptivity.

This section discusses the costs, benefits, and pressing challenges for each
feature.

9.1 Benefits and Costs of Declarative Models

Declarative model-based software reduces the distance between conceptualization
and implementation. Such declarative representations are simple to process and a

10While Madachy calls his work a “risk” model, his definition is so different to the standard
definition ofrisk = severity ∗ frequency that we rename it to a “worries” model.

57

http://sunset.usc.edu/research/COCOMOII/expert_cocomo/expert_cocomo2000.html
http://sunset.usc.edu/research/COCOMOII/expert_cocomo/expert_cocomo2000.html

wide range of time-consuming tasks can be automated. These tasks include code
generation and, as seen in the Feather and Smith work of Figure 2, certain classes
of V&V queries.

The use of such declarative model-based methods is increasing. For exam-
ple, the North American commercial aviation industry and the European VLSI
community make extensive use of these techniques. The recent sudden growth
in model-based methods, languages, tools and techniques has a downside. Since
there are no widely-accepted standards for this technology, users of model-based
systems often must make a considerable investment in learning the quirks of
their particular model-based system. This effort may be required every time staff
changes and new staff must learn the local model-based method.

Hence, our first challenge is:

Challenge 1 Either train developers to jump between modelling frameworks or
developing standards for model-based development.

In this author’s opinion, it is too early to standardize model-based development
and we should accept at least another decade of a tower of model-based Babel.

9.2 Benefits and Costs of Very Early Life Cycle Executables

AI offers the SE community general and powerful interpreters of declarative mod-
els for a wide range of tasks. The benefit of this approach is that it is trivial
to generate a running version of a model. The cost here is that this ease-of-
implementation can lead to sloppy development practices. What is hard to con-
vince developers is that if it is easy to run, it can also be easy to run into trou-
ble. Practitioners using model interpreters often stop generating standard software
documentation (e.g. requirement documents) since the high-level modelIS is the
executable system.

The open issue in this area is the simplification of not only the construction of
a running system, but its assessment as well (perhaps using the Feather & Smith
framework of Figure 2). Fundamentally, this means increasing the modelling ef-
fort of a system; i.e.

Challenge 2 Not only must developers supply enough information for execution,
they must also describe the constraints and assessment criteria for their system.

If that challenge is meet then this enables the next challenge:

Challenge 3 Extend standard model-based methods such that executables and
test-harnesses are automatically generated from declarative models.

58

9.3 Benefits and Costs of Knowledge-level Content

The knowledge-level stores and reflects over the goals of a program. Access to
these goals at V&V time permits the automatic development of assessment oracles
for a system.

The benefits of the knowledge-level come at a cost. Knowledge-level mod-
elling is still an arcane art. Most developers know how to model the core data
structures of their implementation. However, most developers are not trained in
how to add goal and goal processing knowledge to their system. Therefore:

Challenge 4 Train developers in goal-oriented thinking for their modelling.

In this author’s opinion, such a change would represent a major paradigm
change. Hence:

• It may be too late to do this for thecurrent generationof developers.
• Educators should should focus on goal-based methods for thenext genera-

tion of developers.

9.4 Benefits and Costs of Nondeterminism

The costs and benefits of nondeterminism are simple to state. If software is free
to widely explore options at runtime, then it is free to find options that might have
escaped the notice of the developers. However, such freedom means that it is also
free to run to some undesirable state.

While nondeterminism is normally depreciated, the view of this review was
that nondeterminism has significant benefits. Nondeterminism is a source of op-
tions which developers can tap to explore options or repair to the current system.
Empirically, it is known that nondeterministic methods can solve some problems
orders-of-magnitude larger than complete methods. Hence, the challenge of non-
determinism is:

Challenge 5 Understand the range of possible behaviors that arise from a non-
deterministic system.

The work above on TAR2 is the author’s response to this challenge. Recalling
§5.2, if we survey the space of options generated by a nondeterministic device,
we can often find ways to collapse that space towards a more desirable mode of
operation.

59

9.5 Benefits and Costs of Great Complexity

Alan Kay once saidsimple things should be simple, complex things should be
possible. Complex tasks face us everyday and complex tasks require complex
solutions. The benefits of accepting such complexity is that we can solve harder
problems. The cost is obvious: complex software is harder to understand and
evaluate.

Nevertheless, this article has explored several promising methods of evaluat-
ing complex systems and the open challenge in this area is to:

Challenge 6 Improve our automatic program understanding methods such as static
analysis, runtime verification, and model checking.

9.6 Benefits and Costs of Adaptivity

Adaptive systems can change themselves via experience. This has the benefit that
programmers have to code less. However, V&V analysts know the cost of this
approach: as the system changes, then any previous assessment of the system
may become out-dated.

The challenges here are two-fold:

Challenge 7 MICRO-CHANGES: in systems where the adaptive portion is very
small, then the challenge is to understand the space of possible future behaviors
that could arose from adaption.

Note that the answer to this challenge may very well be the same asChal-
lenge 5. That is, if we treat the outputs from the adaptive portion as nondetermin-
istic events, then we may be able to understand the range of possible behaviors
that arise from future adaptations.

The other challenge rejects the MICRO-CHANGE assumption:

Challenge 8 MACRO-CHANGES: in systems where the adaptive portion can make
changes all over a system, then the challenge is to validated the adaptive process
and not the results of adaption.

That is, if we can learn to trust the changes made by a machine learner, system,
we would have less need to constantly re-evaluated a adapting system.

60

Acknowledgements

Dale Pace and Steve Stevenson offered excellent guidance on the content of this
piece. Lisa Montgomery provided invaluable editorial advice.

This research was conducted at West Virginia University under NASA contract
NCC2-0979. The work was sponsored by the NASA Office of Safety and Mission
Assurance under the Software Assurance Research Program led by the NASA
IV&V Facility.

Disclaimer

Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not constitute or imply its en-
dorsement by the United States Government.

References
[1] J. S. Aikins. Prototypical knowledge for expert systems.Artificial Intelligence, 20(2):163–

210, 1983.

[2] J. Angele, D. Fensel, and R. Studer. Domain and task modelling in mike. In A. S. et.al.,
editor,Domain Knowledge for Interactive System Design. Chapman & Hall, 1996.

[3] M. Ayel. Protocols for consistency checking in expert system knowledge bases. InProceed-
ings of the 8th European Conference on Artificial Intelligence (ECAI’88), pages 220–225,
1988.

[4] J. Bachant and J. McDermott. R1 Revisited: Four Years in the Trenches.AI Magazine,
pages 21–32, Fall 1984.

[5] V. Basili, F. McGarry, R. Pajerski, and M. Zelkowitz. Lessons learned from 25 years of
process improvement: The rise and fall of the nasa software engineering laboratory. In
Proceedings of the 24th International Conference on Software Engineering (ICSE) 2002,
Orlando, Florida, 2002.

[6] K. Beck. Extreme Programming Xplained. Addison-Wesley, 1999.

[7] R. Benjamins. Problem-solving methods for diagnosis and their role in knowledge acqui-
sition. International Journal of Expert Systems: Research & Applications, 8(2):93–120,
1995.

[8] D. Bobrow. If prolog is the answer, what is the question? or what it takes to support ai
programming paradigms.IEEE Transactions on Software Engineering, 11(11):1401–1408,
November 1985.

61

[9] B. Boehm. A spiral model of software development and enhancement.Software Engineer-
ing Notes, 11(4):22, 1986.

[10] B. Boehm. Safe and simple software cost analysis.IEEE Software, pages 14–17, Septem-
ber/October 2000.

[11] B. Boehm. Get ready for agile methods.IEEE Computer, pages 2–7, 2002.

[12] I. Bratko and S. Muggleton. Applications of inductive logic programming.Communica-
tions of the ACM, 38(11):65–70, 1995. Available fromftp://ftp.cs.york.ac.uk/
pub/ML_GROUP/Papers/cacm.ps.gz .

[13] I. Bratko. Prolog Programming for Artificial Intelligence. (third edition). Addison-Wesley,
2001.

[14] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and regression
trees. Technical report, Wadsworth International, Monterey, CA, 1984.

[15] J. Breuker and W. V. de Velde (eds).The CommonKADS Library for Expertise Modelling.
IOS Press, Netherlands, 1994.

[16] L. Brownston, R. Farell, E. Kant, and N. martin.Programming Expert Systems in OPS5:
An Introduction to Rule-Based Programming. Addison-Wesley, 1985.

[17] R. E. Bryant. Symbolic boolean manipulation with ordered binary decision diagrams.ACM
Computing Surveys, 24(3), September 1992.

[18] B. Buchanan and E. Shortliffe.Rule-Based Expert Systems: The MYCIN Experiments of
the Stanford Heuristic Programming Project. Addison-Wesley, 1984.

[19] B. Buchanan and R. Smith. Fundamentals of Expert Systems. In P. C. A. Barr and
E. Feigenbaum, editors,The Handbook of Artificial Intelligence, Volume 4, volume 4, pages
149–192. Addison-Wesley, 1989.

[20] C. Burgess and M. Lefley. Can genetic programming improve software effort estimation? a
comparative evaluation.Information and Software Technology, 43(14):863–873, December
2001.

[21] E. P. B. Lopez, P. Meseguer. Knowledge based systems validation: A state of the art.AI
Communications, 5(3):119–135, 1990.

[22] J. Catlett. Inductive learning from subsets or disposal of excess training data considered
harmful. InAustralian Workshop on Knowledge Acqusition for Knowledge-Based Systems,
Pokolbin, pages 53–67, 1991.

[23] B. Chandrasekaran, T. Johnson, and J. W. Smith. Task structure analysis for knowledge
modeling.Communications of the ACM, 35(9):124–137, 1992.

[24] C. Chang, J. Combs, and R. Stachowitz. Report on the expert systems validation associate
(eva).Expert Systems with Applications, 1(3):217–230, 1990.

[25] P. Cheeseman, B. Kanefsky, and W. Taylor. Where the really hard problems are. InPro-
ceedings of IJCAI-91, pages 331–337, 1991.

62

ftp://ftp.cs.york.ac.uk/

[26] W. Clancey. Model Construction Operators.Artificial Intelligence, 53:1–115, 1992.

[27] D. Clancy and B. Kuipers. Model decomposition and simulation: A component based
qualitative simulation algorithm. InAAAI-97, 1997.

[28] E. Clarke, E. Emerson, and A. Sistla. Automatic verification of finite-state concurrent sys-
tems using temporal logic specifications.ACM Transactions on Programming Languages
and Systems, 8(2):244–263, April 1986.

[29] E. Clark and T. Filkorn. Exploiting symmetry in temporal logic model checking. InFifth
International Conference on Computer Aided Verification. Springer-Verlag, 1993.

[30] E. Clark and D. E. Long. Compositional model checking. InFourth Annual Symposium on
Logic in Computer Science, 1989.

[31] P. Clark and T. Ng. The cn2 induction algorithm.Machine Learning, 3:261–283, 1989.

[32] P. Cohen.Empirical Methods for Artificial Intelligence. MIT Press, 1995.

[33] J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Pasarenu, Robby, and H. Zheng. Bandera:
Extracting finite-state models from java source code. InProceedings ICSE2000, Limerick,
Ireland, pages 439–448, 2000.

[34] J. Crawford and A. Baker. Experimental results on the application of satisfiability algo-
rithms to scheduling problems. InAAAI ’94, 1994.

[35] B. L. C. Heitmeyer and D. Kiskis. Consistency checking of scr-style requirements specifi-
cations. InInternational Symposium on Requirements Engineering, York, England , March
26-27, 1995.

[36] R. Davis. Interactive transfer of expertise: Acqusiition of new inference rules.Artificial
Intelligence, 12(2):121–157, 1979.

[37] K. DeJong and W. Spears. An analysis of the interacting roles of population size and
crossover in genetic algorithms. InProc. First Workshop Parallel Problem Solving from
Nature. Springer-Verlag, 1990.

[38] J. DeKleer. An Assumption-Based TMS.Artificial Intelligence, 28:163–196, 1986.

[39] A. V. de Brug, J. Bachant, and J. McDermott. The Taming of R1.IEEE Expert, pages
33–39, Fall 1986.

[40] T. Dietterich. Machine learning research: Four current directions.AI Magazine, 18(4):97–
136, 1997.

[41] M. B. Dwyer, G. S. Avrunin, and J. Corbett. A system specification of patterns.http:
//www.cis.ksu.edu/santos/spec-patterns/ , 1997.

[42] M. Dwyer, G. Avrunin, and J. Corbett. Patterns in property specifications for finite-state
verification. In ICSE98: Proceedings of the 21st International Conference on Software
Engineering, May 1998.

[43] C. C. D. Hamilton, K. Kelley. State-of-the-practice in knowledge-based system verification
and validation.Expert Systems with Applications, 3:403–410, 1991.

63

http://www.cis.ksu.edu/santos/spec-patterns/
http://www.cis.ksu.edu/santos/spec-patterns/

[44] H. Eriksson, Y. Shahar, S. W. Tu, A. R. Puerta, and M. A. Musen. Task modeling with
reusable problem-solving methods.Artificial Intelligence, 79(2):293–326, 1995.

[45] R. Evertsz. The automatic analysis of rule-based system based on their procedural seman-
tics. In Proceedings of the 12th International Joint Conference on Artificial Intelligence
(IJCAI’91), pages 22–27, 1991.

[46] M. Fagan. Advances in software inspections.IEEE Trans. on Software Engineering, pages
744–751, July 1986.

[47] M. Feather and T. Menzies. Converging on the optimal attainment of requirements. InIEEE
Joint Conference On Requirements Engineering ICRE’02 and RE’02, 9-13th September,
University of Essen, Germany, 2002. Available fromhttp://tim.menzies.com/
pdf/02re02.pdf .

[48] M. Feather and B. Smith. Automatic generation of test oracles: From pilot studies to
applications. InProceedings of the Fourteenth IEEE International Conference on Au-
tomated Software Engineering (ASE-99), Cocoa Beach, Florida, pages 63–72, October
1999. Available fromhttp://www-aig.jpl.nasa.gov/public/planning/
papers/oracles-ase.pdf .

[49] N. E. Fenton and M. Neil. A critique of software defect prediction models.IEEE
Transactions on Software Engineering, 25(5):675–689, 1999. Available fromhttp:
//citeseer.nj.nec.com/fenton99critique.html .

[50] K. M. Gardner, A. R. Rush, M. Crist, R. Konitzer, J. J. Odell, B. Teegarden, and R. Konitzer.
Cognitive Patterns: Problem-Solving Frameworks for Object Technology. Cambridge Uni-
versity Press, June 1998.

[51] J. Gaschnig, P. Klahr, H. Pople, E. Shortliffe, and A. Terry. Evaluation of expert systems:
Issues and case studies. In F. Hayes-Roth, D. Waterman, and D. Lenat, editors,Building
Expert Systems, chapter 8, pages 241–280. Addison-Wesley, 1983.

[52] I. Gent, E. MacIntyre, P. Prosser, and T. Walsh. Scaling effects in csp phase transistion. In
International Conference on Principles and Practice of Constraint Programming, 1995.

[53] Y. Gil and E. Melz. Explicit representations of problem-soving strategies to support knowl-
edge acquisition. InProceedings AAAI’ 96, 1996.

[54] Y. Gil and M. Tallis. A script-based approach to modifying knowledge bases. InProceed-
ings of the Fourteenth National Conference on Artificial Intelligence (AAAI-97), 1997.

[55] A. Ginsberg, S. Weiss, and P. Politakis. Automatic knowledge base refinement for classifi-
cation systems.Artificial Intelligence, 35:197–226, 1988.

[56] P. Godefroid. On the costs and benefits of using partial-order methods for the verificiation
of concurrent systems (invited papers). InThe 1996 DIMACS workshop on Partial Order
Methods in Verificaition, July 24-26, 1996, pages 289–303, 1997.

[57] D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, 1989.

64

http://tim.menzies.com/pdf/02re02.pdf
http://www-aig.jpl.nasa.gov/public/planning/papers/oracles-ase.pdf
http://tim.menzies.com/pdf/02re02.pdf
http://citeseer.nj.nec.com/fenton99critique.html
http://citeseer.nj.nec.com/fenton99critique.html
http://www-aig.jpl.nasa.gov/public/planning/papers/oracles-ase.pdf

[58] P. Grogono, A. Batarekh, A. Preece, R. Shinghal, and C. Suen. Expert system evaluation
techniques: A selected bibliography.Expert Systems, pages 227–239, 1992.

[59] K. Havelund and G. Rosu. Java pathexplorer - a runtime verification tool. In
The 6th International Symposium on AI, Robotics and Automation in Space, May
2001. Available fromhttp://ase.arc.nasa.gov/havelund/Publications/
pax-overview.ps .

[60] K. Havelund. Using runtime analysis to guide model checking of java programs. InSPIN
Model Checking and Software Verification, pages 245–264. Springer-Verlag, 2000.

[61] C. Heitmeyer, R. Jeffords, and B. Labaw. Automated consistency checking of re-
quirements specifications.ACM Transactions on Software Engineering and Methodol-
ogy, 5(3):231–261, July 1996. Available fromhttp://citeseer.nj.nec.com/
heitmeyer96automated.html .

[62] C. Heitmeyer. Software cost reduction. In J. J. Marciniak, editor,Encyclopedia of Soft-
ware Engineering, January 2002. Available fromhttp://chacs.nrl.navy.mil/
publications/CHACS/2002/2002heitmeyer-encse.p%df .

[63] G. Hinton. How neural networks learn from experience.Scientific American, pages 144–
151, September 1992.

[64] G. Holzmann. The model checker SPIN.IEEE Transactions on Software Engineering,
23(5):279–295, May 1997.

[65] Y. Hu. Better treatment learning, 2003. Masters Thesis, Department of Electrical Engineer-
ing, University of British Columbia, in preperation.

[66] Y. Ishida. Using global properties for qualitative reasoning: A qualitative system theory. In
Proceedings of IJCAI ’89, pages 1174–1179., 1989.

[67] I. Jacobson and M. Christerson. A Growing Consensus on Use Cases.JOOP, pages 15–19,
1995.

[68] J. Josephson, B. Chandrasekaran, M. Carroll, N. Iyer, B. Wasacz, and G. Rizzoni. Explo-
ration of large design spaces: an architecture and preliminary results. InAAAI ’98, 1998.
Available fromhttp://www.cis.ohio-state.edu/˜jj/Explore.ps .

[69] A. Kakas, R. Kowalski, and F. Toni. The role of abduction in logic programming. In C. H.
D.M. Gabbay and J. Robinson, editors,Handbook of Logic in Artificial Intelligence and
Logic Programming 5, pages 235–324. Oxford University Press, 1998.

[70] H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic and stochastic
search. InProceedings of the Thirteenth National Conference on Artificial Intelligence and
the Eighth Innovative Applications of Artificial Intelligence Conference, pages 1194–1201,
Menlo Park, Aug. 4–8 1996. AAAI Press / MIT Press. Available fromhttp://www.cc.
gatech.edu/˜jimmyd/summaries/kautz1996.ps .

[71] G. Kendall. Tutorial notes on the history of ai, 2001. Available fromhttp://www.cs.
nott.ac.uk/˜gxk/courses/g5aiai/002history/history.htm .

65

http://ase.arc.nasa.gov/havelund/Publications/pax-overview.ps
http://citeseer.nj.nec.com/heitmeyer96automated.html
http://chacs.nrl.navy.mil/publications/CHACS/2002/2002heitmeyer-encse.p%df
http://www.cis.ohio-state.edu/%CB%9Cjj/Explore.ps%00
http://www.cc.gatech.edu/%CB%9Cjimmyd/summaries/kautz1996.ps
http://www.cs.nott.ac.uk/%CB%9Cgxk/courses/g5aiai/002history/history.htm
http://ase.arc.nasa.gov/havelund/Publications/pax-overview.ps
http://citeseer.nj.nec.com/heitmeyer96automated.html
http://chacs.nrl.navy.mil/publications/CHACS/2002/2002heitmeyer-encse.p%df
http://www.cc.gatech.edu/%CB%9Cjimmyd/summaries/kautz1996.ps
http://www.cs.nott.ac.uk/%CB%9Cgxk/courses/g5aiai/002history/history.htm

[72] T. Khoshgoftaar and E. Allen. Model software quality with classification trees. In H. Pham,
editor,Recent Advances in Reliability and Quality Engineering. World Scientific, 1999.

[73] P. S. Laird, R. J. E., and A. Newell. Chunking in SOAR: The anatomy of a general learning
mechanism.Machine Learning, 1(1):11–46, 1986.

[74] J. Laurent. Proposals for a valid terminology in kbs validation. InProceedings of the 10th
European Conference on Artificial Intelligence, ECAI-92, Vienna, Austria, pages 829–834,
1992.

[75] N. Leveson.Safeware System Safety And Computers. Addison-Wesley, 1995.

[76] R. Lutz and R. Woodhouse. Bi-directional analysis for certification of safety-critical
software. In1st International Software Assurance Certification Conference (ISACC’99),
1999. Available fromhttp://www.cs.iastate.edu/˜rlutz/publications/
isacc99.ps .

[77] R. Madachy. Heuristic risk assessment using cost factors.IEEE Software, 14(3):51–59,
May 1997.

[78] D. Marques, G. Dallemagne, G. Kliner, J. McDermott, and D. Tung. Easy Programming:
Empowering People to Build Their own Applications.IEEE Expert, pages 16–29, June
1992.

[79] S. McConnell. The best influences on software engineering.IEEE Software, Jan-
uary/February 2000. Available fromwww.computer.org/software/so2000/
pdf/s1010.pdf .

[80] J. McDermott. R1’s formative years.AI Magazine, 2(2):21–29, 1981.

[81] J. McDermott. R1 (”xcon”) at age 12: lessons from an elementary school achiever.Artificial
Intelligence, 59:241–247, 1993.

[82] M. Mendonca and N. Sunderhaft. Mining software engineering data: A survey, September
1999. A DACS State-of-the-Art Report. Available fromhttp://www.dacs.dtic.
mil/techs/datamining/ .

[83] T. Menzies, E. Chiang, M. Feather, Y. Hu, and J. Kiper. Condensing uncertainty via in-
cremental treatment learning. InAnnals of Software Engineering, 2002. Available from
http://tim.menzies.com/pdf/02itar2.pdf .

[84] T. Menzies, R. Cohen, S. Waugh, and S. Goss. Applications of abduction: Testing very
long qualitative simulations.IEEE Transactions of Data and Knowledge Engineering (ac-
cepted for publication, 2000), 2003. Available fromhttp://tim.menzies.com/
pdf/97iedge.pdf .

[85] T. Menzies and P. Compton. Applications of abduction: Hypothesis testing of neu-
roendocrinological qualitative compartmental models.Artificial Intelligence in Medicine,
10:145–175, 1997. Available fromhttp://tim.menzies.com/pdf/96aim.pdf .

[86] T. Menzies, B. Cukic, H. Singh, and J. Powell. Testing nondeterminate systems. InISSRE
2000, 2000. Available fromhttp://tim.menzies.com/pdf/00issre.pdf .

66

http://www.cs.iastate.edu/%CB%9Crlutz/publications/isacc99.ps
http://www.dacs.dtic.mil/techs/datamining/
http://tim.menzies.com/pdf/02itar2.pdf
http://tim.menzies.com/pdf/97iedge.pdf
http://tim.menzies.com/pdf/96aim.pdf
http://tim.menzies.com/pdf/00issre.pdf
http://www.computer.org/software/so2000/pdf/s1010.pdf
http://www.computer.org/software/so2000/pdf/s1010.pdf
http://www.cs.iastate.edu/%CB%9Crlutz/publications/isacc99.ps
http://www.dacs.dtic.mil/techs/datamining/
http://tim.menzies.com/pdf/97iedge.pdf

[87] T. Menzies and B. Cukic. On the sufficiency of limited testing for knowledge based sys-
tems. InThe Eleventh IEEE International Conference on Tools with Artificial Intelligence.
November 9-11, 1999. Chicago IL USA., 1999.

[88] T. Menzies and B. Cukic. Adequacy of limited testing for knowledge based systems.In-
ternational Journal on Artificial Intelligence Tools (IJAIT), June 2000. Available from
http://tim.menzies.com/pdf/00ijait.pdf .

[89] T. Menzies and B. Cukic. When to test less.IEEE Software, 17(5):107–112, 2000. Avail-
able fromhttp://tim.menzies.com/pdf/00iesoft.pdf .

[90] T. Menzies and J. S. DiStefeno. Software metrics: A case study on mccabes. In27th NASA
SEL workshop on Software Engineering (submitted), 2002.

[91] T. Menzies, S. Easterbrook, B. Nuseibeh, and S. Waugh. An empirical investigation of
multiple viewpoint reasoning in requirements engineering. InRE ’99, 1999. Available
from http://tim.menzies.com/pdf/99re.pdf .

[92] T. Menzies and Y. Hu. Constraining discussions in requirements engineering. InFirst
International Workshop on Model-based Requirements Engineering, 2001. Available from
http://tim.menzies.com/pdf/01lesstalk.pdf .

[93] T. Menzies and Y. Hu. Reusing models for requirements engineering. InFirst International
Workshop on Model-based Requirements Engineering, 2001. Available fromhttp://
tim.menzies.com/pdf/01reusere.pdf .

[94] T. Menzies and Y. Hu. Agents in a wild world. In C. Rouff, editor,Formal Approaches
to Agent-Based Systems, book chapter, 2002. Available fromhttp://tim.menzies.
com/pdf/01agents.pdf .

[95] T. Menzies and Y. Hu. Just enough learning (of association rules). InWVU CSEE tech
report, 2002. Available fromhttp://tim.menzies.com/pdf/02tar2.pdf .

[96] T. Menzies and C. Michael. Fewer slices of pie: Optimising mutation testing via ab-
duction. In SEKE ’99, June 17-19, Kaiserslautern, Germany. Available fromhttp:
//tim.menzies.com/pdf/99seke.pdf , 1999.

[97] T. Menzies, D. Owen, and B. Cukic. Saturation effects in testing of formal models. In
ISSRE 2002, 2002. Available fromhttp://tim.menzies.com/pdf/02sat.pdf .

[98] T. Menzies, J. Powell, and M. E. Houle. Fast formal analysis of requirements via ’topoi
diagrams’. InICSE 2001, 2001. Available fromhttp://tim.menzies.com/pdf/
00fastre.pdf .

[99] T. Menzies, D. Raffo, S. on Setamanit, Y. Hu, and S. Tootoonian. Model-based tests of
truisms. InProceedings of IEEE ASE 2002, 2002.

[100] T. Menzies and H. Singh. Many maybes mean (mostly) the same thing. In2nd International
Workshop on Soft Computing applied to Software Engineering (Netherlands), February,
2001. Available fromhttp://tim.menzies.com/pdf/00maybe.pdf .

67

http://tim.menzies.com/pdf/00ijait.pdf
http://tim.menzies.com/pdf/00iesoft.pdf
http://tim.menzies.com/pdf/99re.pdf
http://tim.menzies.com/pdf/01lesstalk.pdf
http://tim.menzies.com/pdf/01reusere.pdf
http://tim.menzies.com/pdf/01agents.pdf
http://tim.menzies.com/pdf/02tar2.pdf
http://tim.menzies.com/pdf/02sat.pdf
http://tim.menzies.com/pdf/00fastre.pdf
http://tim.menzies.com/pdf/00maybe.pdf
http://tim.menzies.com/pdf/01reusere.pdf
http://tim.menzies.com/pdf/01agents.pdf
http://tim.menzies.com/pdf/99seke.pdf
http://tim.menzies.com/pdf/99seke.pdf
http://tim.menzies.com/pdf/00fastre.pdf

[101] T. Menzies and E. Sinsel. Practical large scale what-if queries: Case studies with soft-
ware risk assessment. InProceedings ASE 2000, 2000. Available fromhttp://tim.
menzies.com/pdf/00ase.pdf .

[102] T. Menzies.Principles for Generalised Testing of Knowledge Bases. PhD thesis, University
of New South Wales, 1995. Ph.D. thesis. Available fromhttp://tim.menzies.com/
pdf/95thesis.pdf .

[103] T. Menzies. Knowledge maintenance: The state of the art.The Knowledge Engineer-
ing Review, 14(1):1–46, 1999. Available fromhttp://tim.menzies.com/pdf/
97kmall.pdf .

[104] T. Menzies. Practical machine learning for software engineering and knowledge engineer-
ing. In Handbook of Software Engineering and Knowledge Engineering. World-Scientific,
December 2001. Available fromhttp://tim.menzies.com/pdf/00ml.pdf .

[105] P. Meseguer. Verification of multi-level rule-based expert systems. InProceedings of the
Ninth National Conference on Artificial Intelligence, pages 323–328, 1991.

[106] P. Meseguer. Incremental verification of rule-based expert systems. InProceedings of the
10th European Conference on Artificial Intelligence, ECAI-92, pages 840–844, 1992.

[107] P. Meseguer. Towards a conceptual framework for expert system validation.Artificial
Intelligence Communications, 5(3):119–135, 1992.

[108] T. Mitchell, R. Keller, and S. T. Kedar-Cabelli. Explanation-based generalization: A unify-
ing view. Machine Learning, 1:47–80, 1986.

[109] T. Mitchell. Machine Learning. McGraw-Hill, 1997.

[110] E. Motta and Z. Zdrahal. Parametric design problem solving. InProceedings of the 10th
Banff Knowledge Acquisition for Knowledge-Based System Workshop, 1996.

[111] NASA. CLIPS Reference Manual. Software Technology Branch, lyndon B. Johnson Space
Center, 1991.

[112] A. Newell. The Knowledge Level.Artificial Intelligence, 18:87–127, 1982.

[113] A. Newell. Reflections on the Knowledge Level.Artificial Intelligence, 59:31–38, Feburary
1993.

[114] T. Nguyen, W. Perkins, T. Laffey, and D. Pecora. Knowledge base verification.AI Maga-
zine, 8(2):69–75, 1987.

[115] R. O’Keefe and D. O’Leary. Expert system verification and validation: a survey and tuto-
rial. Artificial Intelligence Review, 7:3–42, 1993.

[116] A. Parkes. Lifted search engines for satisfiability, 1999.

[117] D. Parnas. On the criteria to be used in decomposing systems into modules.Communica-
tions of the ACM, 5(12):1053–1058, Dec. 1972.

68

http://tim.menzies.com/pdf/00ase.pdf
http://tim.menzies.com/pdf/95thesis.pdf
http://tim.menzies.com/pdf/97kmall.pdf.
http://tim.menzies.com/pdf/00ml.pdf
http://tim.menzies.com/pdf/97kmall.pdf.
http://tim.menzies.com/pdf/95thesis.pdf
http://tim.menzies.com/pdf/00ase.pdf

[118] C. Pecheur and R. Simmons. From livingstone to smv: Formal verification for autonomous
spacecrafts. InProceedings of First Goddard Workshop on Formal Approaches to Agent-
Based Systems, pages 5–7, April 2000. Available fromhttp://ase.arc.nasa.gov/
pecheur/publi/Livingstone2smv-faabs.ps .

[119] G. Prakash, E. Subramanian, and H. Mahabala. A methodology for systematic verification
of ops5-based ai applications. InProceedings of the 12th International Joint Conference
on Artificial Intelligence (IJCAI’91), pages 3–8, 1991.

[120] A. Preece, R. Shinghal, and A. Batarekh. Verifying expert systems: a logical framework
and a practical tool.Expert Systems with Applications, 5(2):421–436, 1992.

[121] A. Preece and R. Shinghal. Verifying knowledge bases by anomaly detection: An experi-
ence report. InECAI ’92, 1992.

[122] A. Preece. Principles and practice in verifying rule-based systems.The Knowledge Engi-
neering Review, 7:115–141, 2 1992.

[123] R. Quinlan. Induction of decision trees.Machine Learning, 1:81–106, 1986.

[124] R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufman, 1992. ISBN:
1558602380.

[125] E. S. Raymond and B. Young.The Cathedral and the Bazaar: Musings on Linux and Open
Source by an Accidental Revolutionary. O’Reilly & Associates, 2001. A short form is avail-
able fromhttp://www.tuxedo.org/˜esr/writings/cathedral-bazaar/
cathedral-bazaar/ .

[126] R. O. R.M., O. Balci, and E. Smith. Validating expert system performance.IEEE Expert,
87:81–89, Winter 1987.

[127] M. Rousset. On the consistency of knowledge bases: the covadis system. InProceedings
of the 8th European Conference on Artificial Intelligence (ECAI’88), pages 79–84, 1988.

[128] J. Rushby. Quality measures and assurance for ai software, 1988. SRI-CSL-88-7R, SRI
Project 4616.

[129] R. Rymon. An SE-tree based characterization of the induction problem. InInternational
Conference on Machine Learning, pages 268–275, 1993.

[130] R. Rymon. An se-tree-based prime implicant generation algorithm. InAnnals of Math. and
A.I., special issue on Model-Based Diagnosis, volume 11, 1994. Available fromhttp:
//citeseer.nj.nec.com/193704.html .

[131] F. Schneider, S. Easterbrook, J. Callahan, G. Holzmann, W. Reinholtz, A. Ko, and M. Sha-
habuddin. Validating requirements for fault tolerant systems using model checking. In3rd
IEEE International Conference On Requirements Engineering, 1998.

[132] A. T. Schreiber, B. Wielinga, J. M. Akkermans, W. V. D. Velde, and R. de Hoog. Com-
monkads. a comprehensive methodology for kbs development.IEEE Expert, 9(6):28–37,
1994.

[133] G. Schreiber, editor. Knowledge Engineering and Management : The CommonKADS
Methodology. MIT Press, 1999.

69

http://ase.arc.nasa.gov/pecheur/publi/Livingstone2smv-faabs.ps
http://www.tuxedo.org/%CB%9Cesr/writings/cathedral-bazaar/cathedral-bazaar/
http://ase.arc.nasa.gov/pecheur/publi/Livingstone2smv-faabs.ps
http://citeseer.nj.nec.com/193704.html
http://citeseer.nj.nec.com/193704.html

[134] B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satisfiability
problems. InAAAI ’92, pages 440–446, 1992.

[135] E. Y. Shapiro. Algorithmic program debugging. MIT Press, Cambridge, Massachusetts,
1983.

[136] M. Shaw and D. Garlan.Software Architecture: Perspectives on an Emerging Discipline.
Prentice Hall, 1996.

[137] J. Singer, I. P. Gent, and A. Smaill. Backbone fragility and the local search cost peak.
Journal of Artificial Intelligence Research, 12:235–270, 2000.

[138] B. Smith and M. Dyer. Locating the phase transition in binary constraint satisfaction prob-
lems.Artificial Intelligence, 81(1-2):155–181, 1996.

[139] E. Soloway, J. Bachant, and K. Jensen. Assessing the maintainability of xcon-in-rime:
Coping with the problems of a very large rule-base. InAAAI ’87, pages 824–829, 1987.

[140] K. Srinivasan and D. Fisher. Machine learning approaches to estimating software develop-
ment effort.IEEE Trans. Soft. Eng., pages 126–137, February 1995.

[141] L. Steels. Components of Expertise.AI Magazine, 11:29–49, 2 1990.

[142] M. Stefik, J. Aikins, R. Balzer, J. Benoit, L. Birnhaum, F. Hayes-Roth, and E. Sacerdoti.
The Organisation of Expert Systems, A Tutorial.Artificial Intelligence, 18:135–127, 1982.

[143] M. Suwa, A. Scott, and E. Shortliffe. Completeness and consistency in rule-based expert
systems.AI Magazine, 3(4):16–21, 1982.

[144] B. Swartout and Y. Gill. Flexible knowledge acquisition through explicit representation of
knowledge roles. In1996 AAAI Spring Symposium on Acquisition, Learning, and Demon-
stration: Automating Tasks for Users, 1996.

[145] D. Tansley and C. Hayball.Knowledge-Based Systems Analysis and Design. Prentice-Hall,
1993.

[146] J. Tian and M. Zelkowitz. Complexity measure evaluation and selection.IEEE Transaction
on Software Engineering, 21(8):641–649, Aug. 1995.

[147] P. M. T. Hoppe. Vvt terminology: A proposal.IEEE Expert, 8(3):48–55, 1993.

[148] F. van Harmelen and M. Aben. Structure-preserving specification languages for knowledge-
based systems.International Journal of Human-Computer Studies, 44:187–212, 1996.

[149] F. van Harmelen and A. Bundy. Explanation-based generalisation = partial evaluation.
Artificial Intelligence, pages 401–412, 1988.

[150] B. W.Boehm, E. Horowitz, R. Madachy, D. Reifer, B. K. Clark, B. Steece, A. W. Brown,
S. Chulani, and C. Abts.Software Cost Estimation with Cocomo II. Prentice Hall, 2000.

[151] B. Wielinga, A. Schreiber, and J. Breuker. KADS: a Modeling Approach to Knowledge
Engineering.Knowledge Acquisition, 4:1–162, 1 1992.

70

[152] G. Williams and Z. Huang. A case study in knowledge acquisition for insurance risk assess-
ment using a kdd methodology. InProceedings PKAW ’96: Pacific Knowledge Acquisition
Workshop, 1996.

[153] I. H. Witten and E. Frank.Data Mining: Practical Machine Learning Tools and Techniques
with Java Implementations. Morgan Kaufmann, 1999.

[154] G. Yost and A. Newell. A Problem Space Approach to Expert System Specification. In
IJCAI ’89, pages 621–627, 1989.

[155] G. Yost. Acquiring knowledge in soar.IEEE Expert, pages 26–34, June 1993.

[156] N. Zlatereva and A. Preece. State of the art in automated validation of knowledge-based
systems.Expert Systems with Applications, 7:151–167, 2 1994.

71

	CD Title Page
	CD Table of Contents
	Acronym List
	Acrobat Help
	Verification and Validation and Artificial Intelligence
	Abstract
	Contents
	List of Figures
	About the author
	1 Introduction
	2 Model-based AI Systems
	2.1 Declarative Models and V&V

	3 AI Models are Executable
	3.1 RUDE Models
	3.2 V&V of Executable Models

	4 AI and the Knowledge-Level
	4.1 Knowledge-Level V&V

	5 AI Software can be Nondeterministic
	5.1 Random SELECT and Scalability
	5.2 Surveying the Nondeterministic Space
	5.3 Random SELECT and Options Analysis
	5.4 Nondeterminism and V&V

	6 AI Software can be Complex
	6.1 V&V of Complex Software
	6.1.1 Static Analysis
	6.1.2 Runtime Verification
	6.1.3 Model Checking

	7 Adaptive AI Systems
	7.1 Introduction to Learning
	7.2 Adaption and V&V
	7.2.1 Do you Have Enough Data?
	7.2.2 External Validity

	7.3 Case Study
	7.3.1 Accuracy of the Learnt Model
	7.3.2 Learning and Consistent Convergence
	7.3.3 Learning and Ease of Configuration
	7.3.4 Learning and Readability

	7.4 Readability and Treatment Learners
	7.5 Learning to Trust Adaption

	8 AI is Software
	9 Summary and Challenges
	9.1 Benefits and Costs of Declarative Models
	9.2 Benefits and Costs of Very Early Life Cycle Executables
	9.3 Benefits and Costs of Knowledge-level Content
	9.4 Benefits and Costs of Nondeterminism
	9.5 Benefits and Costs of Great Complexity
	9.6 Benefits and Costs of Adaptivity

	Acknowledgements
	Disclaimer
	References

